Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (7): 735-747.DOI: 10.15541/jim20190388
Special Issue: 封面文章; 能源材料论文精选(四):光催化与电催化(2020); MXene材料专辑(2020~2021); 【虚拟专辑】层状MAX,MXene及其他二维材料; 【虚拟专辑】氢能材料(2020~2021)
• REVIEW • Next Articles
LI Neng,KONG Zhouzhou,CHEN Xingzhu,YANG Yufei
Received:
2019-07-25
Revised:
2019-11-06
Published:
2020-07-20
Online:
2019-12-04
Supported by:
CLC Number:
LI Neng,KONG Zhouzhou,CHEN Xingzhu,YANG Yufei. Research Progress of Novel Two-dimensional Materials in Photocatalysis and Electrocatalysis[J]. Journal of Inorganic Materials, 2020, 35(7): 735-747.
Fig. 3 (a) ORR schematic diagram of the surface of N-doped graphene/V2C MXene composite structure[39], (b) schematic diagram of CO2RR of Mo3C2 MXene surface[41], (c) schematic diagram of N2RR of V3C2 MXene surface[42] (1 Å=0.1 nm)
Fig. 4 (a) Hydrogen adsorption free energy of V2CO2 MXene surface supported by transition metal atom[46] and (b) HER active volcano map of M3CNO2 type MXene[35]
Fig. 5 Catalytic performance modification methods of g-C3N4 (a) Different precursors and synthetic parameters affect the specific surface area and band gap of g-C3N4[6], (b) preparation of two-dimensional g-C3N4 nanosheets by nanocrystallization[60], and (c) effect of N doping on the photocatalytic hydrogen separation performance of g-C3N4[61]
Fig. 7 Modification of catalytic properties of two-dimensional materials (a) Boundary state regulation; (b) Functional group regulation; (c) Defect state regulation; (d) Single atomic immobilization; (e) Confinement effect; (f) Heterojunction
[1] |
GEIM A K, NOVOSELOV K S. The rise of graphene. Nature Mater., 2007,6:183-191.
DOI URL |
[2] |
傅强, 包信和. 石墨烯的化学研究进展. 科学通报, 2009,54(18):2657-2666.
DOI URL |
[3] |
ONG W J, TAN L L, NG Y H, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chemical Reviews, 2016,116(12):7159-7329.
DOI URL PMID |
[4] |
THOMAS A, FISCHER A, GOETTMANN F, et al. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. Journal of Materials Chemistry, 2008,18(41):4893.
DOI URL |
[5] |
张金水, 王博, 王心晨. 石墨相氮化碳的化学合成及应用. 物理化学学报, 2013,29(9):1865-1876.
DOI URL |
[6] |
LUKATSKAYA M R, MASHTALIR O, REN C E, et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science, 2013,341(6153):1502-1505.
DOI URL |
[7] |
NAGUIB M, COME J, DYATKIN B, et al. MXene: a promising transition metal carbide anode for lithium-ion batteries. Electrochemistry Communications, 2012,16(1):61-64.
DOI URL |
[8] |
PENG J, CHEN X, ONG W J, et al. Surface and heterointerface engineering of 2D MXenes and their nanocomposites: insights into electro- and photocatalysis. Chem., 2019,5(1):18-50.
DOI URL |
[9] |
CHHOWALLA M, LIU Z, ZHANG H. Two-dimensional transition metal dichalcogenide (TMD) nanosheets. Chemical Society Reviews, 2015,44(9):2584-2586.
DOI URL PMID |
[10] |
CHHOWALLA M, SHIN H S, EDA G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chemistry, 2013,5:263.
DOI URL |
[11] |
XU M, LIANG T, SHI M, et al. Graphene-like two-dimensional materials. Chemical Reviews, 2013,113(5):3766-3798.
DOI URL PMID |
[12] |
CHEN P, LI N, CHEN X, et al. The rising star of 2D black phosphorus beyond graphene: synthesis, properties and electronic applications. 2D Materials, 2017,5(1):014002.
DOI URL |
[13] |
袁振洲, 刘丹敏, 田楠, 等. 二维黑磷的结构、制备和性能. 化学学报, 2016,74(6):488-497.
DOI URL |
[14] |
LIN Y, WILLIAMS T V, CONNELL J W. Soluble, exfoliated hexagonal boron nitride nanosheets. The Journal of Physical Chemistry Letters, 2010,1(1):277-283.
DOI URL |
[15] |
SONG L, CI L, LU H, et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Letters, 2010,10(8):3209-3215.
DOI URL PMID |
[16] |
GONG M, LI Y, WANG H, et al. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. Journal of the American Chemical Society, 2013,135(23):8452-8455.
DOI URL PMID |
[17] |
WANG Q, O’HARE D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chemical Reviews, 2012,112(7):4124-4155.
DOI URL PMID |
[18] |
OSADA M, SASAKI T. Exfoliated oxide nanosheets: new solution to nanoelectronics. Journal of Materials Chemistry, 2009,19(17):2503-2511.
DOI URL |
[19] |
PENG Y, LI Y, BAN Y, et al. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science, 2014,346(6215):1356.
DOI URL PMID |
[20] |
RODENAS T, LUZ I, PRIETO G, et al. Metal-organic framework nanosheets in polymer composite materials for gas separation. Nature Materials, 2014,14:48.
DOI URL PMID |
[21] |
PENG Y, HUANG Y, ZHU Y, et al. Ultrathin two-dimensional covalent organic framework nanosheets: preparation and application in highly sensitive and selective DNA detection. Journal of the American Chemical Society, 2017,139(25):8698-8704.
DOI URL PMID |
[22] |
KISSEL P, MURRAY D J, WULFTANGE W J, et al. A nanoporous two-dimensional polymer by single-crystal-to-single-crystal photopolymerization. Nature Chemistry, 2014,6:774.
DOI URL |
[23] |
TAO L, CINQUANTA E, CHIAPPE D, et al. Silicene field-effect transistors operating at room temperature. Nature Nanotechnology, 2015,10(3):227-231.
DOI URL PMID |
[24] |
ZHANG S, YAN Z, LI Y, et al. Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions. Angewandte Chemie International Edition, 2015,54(10):3112-3115.
DOI URL PMID |
[25] |
ZHANG T, DAR M I, LI G, et al. Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells. Science Advances, 2017,3(9):e1700841.
DOI URL PMID |
[26] |
TSAI H, NIE W, BLANCON J C, et al. High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature, 2016,536(7616):312-316.
DOI URL PMID |
[27] |
TAN C, CAO X, WU X J, et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev., 2017,117(9):6225-6331.
DOI URL PMID |
[28] |
ASHTON M, PAUL J, SINNOTT S B, et al. Topology-scaling identification of layered solids and stable exfoliated 2D materials. Physical Review Letters, 2017,118(10):106101.
DOI URL PMID |
[29] |
NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 2011,23(37):4248-4253.
DOI URL PMID |
[30] |
BARSOUM M W. The MN+1AXN phases: a new class of solids: thermodynamically stable nanolaminates. Progress in Solid State Chemistry, 2000,28(1):201-281.
DOI URL |
[31] |
HERN NDEZ S, MISKA P, GR N M, et al. Tailoring the surface density of silicon nanocrystals embedded in SiOx single layers. Journal of Applied Physics, 2013,114(23):233101.
DOI URL |
[32] |
SUN Z, LI S, AHUJA R, et al. Calculated elastic properties of M2AlC (M=Ti, V, Cr, Nb and Ta). Solid State Communications, 2004,129(9):589-592.
DOI URL |
[33] |
GUO Z, ZHU L, ZHOU J, et al. Microscopic origin of MXenes derived from layered MAX phases. RSC Advances, 2015,5(32):25403-25408.
DOI URL |
[34] | 李正阳, 周爱国, 王李波, 等. 二维晶体MXene的制备与性能研究进展, 硅酸盐通报, 2013,32(8):1562-1566. |
[35] |
NAGUIB M, MASHTALIR O, CARLE J, et al. Two-dimensional transition metal carbides. ACS Nano, 2012,6(2):1322-1331.
DOI URL PMID |
[36] |
MA T Y, CAO J L, JARONIEC M, et al. Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution. Angewandte Chemie International Edition, 2016,55(3):1138-1142.
DOI URL PMID |
[37] |
ZHAO L, DONG B, LI S, et al. Interdiffusion reaction-assisted hybridization of two-dimensional metal-organic frameworks and Ti3C2Tx nanosheets for electrocatalytic oxygen evolution. ACS Nano, 2017,11(6):5800-5807.
DOI URL PMID |
[38] |
YU M, ZHOU S, WANG Z, et al. Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene. Nano Energy, 2018,44:181-190.
DOI URL |
[39] |
ZHOU S, YANG X, PEI W, et al. Heterostructures of MXenes and N-doped graphene as highly active bifunctional electrocatalysts. Nanoscale, 2018,10(23):10876-10883.
DOI URL PMID |
[40] |
ZHANG X, LEI J, WU D, et al. A Ti-anchored Ti2CO2 monolayer (MXene) as a single-atom catalyst for CO oxidation. Journal of Materials Chemistry A, 2016,4(13):4871-4876.
DOI URL |
[41] |
LI N, CHEN X, ONG W J, et al. Understanding of electrochemical mechanisms for CO2 capture and conversion into hydrocarbon fuels in transition-metal carbides (MXenes). ACS Nano, 2017,11(11):10825-10833.
DOI URL PMID |
[42] | AZOFRA L M, LI N, MACFARLANE D R, et al. Promising prospects for 2D d2-d4 M3C2 transition metal carbides (MXenes) in N2 capture and conversion into ammonia. Energy & Environmental Science, 2016,9(8):2545-2549. |
[43] |
ZHAO D, CHEN Z, YANG W, et al. MXene (Ti3C2) vacancy-confined single-atom catalyst for efficient functionalization of CO2. Journal of the American Chemical Society, 2019,141(9):4086-4093.
DOI URL PMID |
[44] |
LING C, SHI L, OUYANG Y, et al. Searching for highly active catalysts for hydrogen evolution reaction based on O-terminated MXenes through a simple descriptor. Chemistry of Materials, 2016,28(24):9026-9032.
DOI URL |
[45] |
GUO Z, ZHOU J, ZHU L, et al. MXene: a promising photocatalyst for water splitting. Journal of Materials Chemistry A, 2016,4(29):11446-11452.
DOI URL |
[46] |
LING C, SHI L, OUYANG Y, et al. Transition metal-promoted V2CO2(MXenes): a new and highly active catalyst for hydrogen evolution reaction. Advanced Science, 2016,3(11):1600180.
DOI URL PMID |
[47] |
LI P, ZHU J, HANDOKO A D, et al. High-throughput theoretical optimization of the hydrogen evolution reaction on MXenes by transition metal modification. Journal of Materials Chemistry A, 2018,6(10):4271-4278.
DOI URL |
[48] |
WANG H, PENG R, HOOD Z D, et al. Titania composites with 2D transition metal carbides as photocatalysts for hydrogen production under visible-light irradiation. ChemSusChem, 2016,9(12):1490-1497.
DOI URL PMID |
[49] |
RAN J, GAO G, LI F T, et al. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nature Communications, 2017,8:13907.
DOI URL PMID |
[50] |
SHAO M, SHAO Y, CHAI J, et al. Synergistic effect of 2D Ti2C and g-C3N4 for efficient photocatalytic hydrogen production. Journal of Materials Chemistry A, 2017,5(32):16748-16756.
DOI URL |
[51] |
SUN Y, JIN D, SUN Y, et al. g-C3N4/Ti3C2Tx(MXenes) composite with oxidized surface groups for efficient photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2018,6(19):9124-9131.
DOI URL |
[52] |
PANDEY M, THYGESEN K S. Two-dimensional MXenes as catalysts for electrochemical hydrogen evolution: a computational screening study. The Journal of Physical Chemistry C, 2017,121(25):13593-13598.
DOI URL |
[53] |
SEH Z W, FREDRICKSON K D, ANASORI B, et al. Two-dimensional Molybdenum Carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Letters, 2016,1(3):589-594.
DOI URL |
[54] |
HUANG B, ZHOU N, CHEN X, et al. Insights into the electrocatalytic hydrogen evolution reaction mechanism on two-dimensional transition-metal carbonitrides (MXene). Chemistry, 2018,24(69):18479-18486.
DOI URL PMID |
[55] |
JIANG Y, SUN T, XIE X, et al. Oxygen-functionalized ultrathin Ti3C2Tx MXene for enhanced electrocatalytic hydrogen evolution. ChemSusChem., 2019,12(7):1368-1373.
DOI URL PMID |
[56] |
TETER D M, HEMLEY R J. Low-compressibility carbon nitrides. Science, 1996,271(5245):53.
DOI URL |
[57] |
KROKE E, SCHWARZ M, HORATH-BORDON E, et al. Tri-s-triazine derivatives. Part I. From trichloro-tri-s-triazine to graphitic C3N4 structures. New Journal of Chemistry, 2002,26(5):508-512.
DOI URL |
[58] |
WANG X, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater., 2009,8(1):76-80.
DOI URL PMID |
[59] |
CAO S, YU J. g-C3N4-based photocatalysts for hydrogen generation. The Journal of Physical Chemistry Letters, 2014,5(12):2101-2107.
DOI URL PMID |
[60] | ZHANG J, CHEN Y, WANG X. Two-dimensional covalent carbon nitride nanosheets: synthesis, functionalization, and applications. Energy & Environmental Science, 2015,8(11):3092-3108. |
[61] |
HAO Q, SONG Y, JI H, et al. Surface N modified 2D g-C3N4 nanosheets derived from DMF for photocatalytic H2 evolution. Applied Surface Science, 2018,459:845-852.
DOI URL |
[62] |
CUI Y, ZHANG J, ZHANG G, et al. Synthesis of bulk and nanoporous carbon nitride polymers from ammonium thiocyanate for photocatalytic hydrogen evolution. Journal of Materials Chemistry, 2011,21(34):13032-13039.
DOI URL |
[63] |
BELLARDITA M, GARC A L, PEZ E I, et al. Selective photocatalytic oxidation of aromatic alcohols in water by using P-doped g-C3N4. Applied Catalysis B: Environmental, 2018,220:222-233.
DOI URL |
[64] |
JOURSHABANI M, SHARIATINIA Z, BADIEI A. Synthesis and characterization of novel Sm2O3/S-doped g-C3N4 nanocomposites with enhanced photocatalytic activities under visible light irradiation. Applied Surface Science, 2018,427:375-387.
DOI URL |
[65] |
FU J, YU J, JIANG C, et al. g-C3N4-based heterostructured photocatalysts. Advanced Energy Materials, 2018,8:1701503.
DOI URL |
[66] |
BAI Y, WANG P Q, LIU J Y, et al. Enhanced photocatalytic performance of direct Z-scheme BiOCl-g-C3N4 photocatalysts. RSC Advances, 2014,4(37):19456-19461.
DOI URL |
[67] |
DI J, XIA J, YIN S, et al. Preparation of sphere-like g-C3N4/BiOI photocatalysts via a reactable ionic liquid for visible-light-driven photocatalytic degradation of pollutants. Journal of Materials Chemistry A, 2014,2(15):5340-5351.
DOI URL |
[68] |
LIU C, HUANG H, DU X, et al. In situ co-crystallization for fabrication of g-C3N4/Bi5O7I heterojunction for enhanced visible-light photocatalysis. The Journal of Physical Chemistry C, 2015,119(30):17156-17165.
DOI URL |
[69] |
LI G, WANG B, ZHANG J, et al. Rational construction of a direct Z-scheme g-C3N4/CdS photocatalyst with enhanced visible light photocatalytic activity and degradation of erythromycin and tetracycline. Applied Surface Science, 2019,478:1056-1064.
DOI URL |
[70] |
LIU Y, ZHANG H, KE J, et al. 0D (MoS2)/2D (g-C3N4) heterojunctions in Z-scheme for enhanced photocatalytic and electrochemical hydrogen evolution. Applied Catalysis B: Environmental, 2018,228:64-74.
DOI URL |
[71] |
HONG Y, JIANG Y, LI C, et al. In-situ synthesis of direct solid-state Z-scheme V2O5/g-C3N4 heterojunctions with enhanced visible light efficiency in photocatalytic degradation of pollutants. Applied Catalysis B: Environmental, 2016,180:663-673.
DOI URL |
[72] |
HUANG Z A, SUN Q, LYU K, et al. Effect of contact interface between TiO2 and g-C3N4 on the photoreactivity of g-C3N4/TiO2 photocatalyst: (001) vs (101) facets of TiO2 Applied Catalysis B: Environmental, 2015,164:420-427.
DOI URL |
[73] |
WANG J, XIA Y, ZHAO H, et al. Oxygen defects-mediated Z-scheme charge separation in g-C3N4/ZnO photocatalysts for enhanced visible-light degradation of 4-chlorophenol and hydrogen evolution. Applied Catalysis B: Environmental, 2017,206:406-416.
DOI URL |
[74] |
YU W, CHEN J, SHANG T, et al. Direct Z-scheme g-C3N4/WO3 photocatalyst with atomically defined junction for H2 production. Applied Catalysis B: Environmental, 2017,219:693-704.
DOI URL |
[75] |
TIAN J, NING R, LIU Q, et al. Three-dimensional porous supramolecular architecture from ultrathin g-C3N4 nanosheets and reduced graphene oxide: solution self-assembly construction and application as a highly efficient metal-free electrocatalyst for oxygen reduction reaction. ACS Applied Materials & Interfaces, 2014,6(2):1011-1017.
DOI URL PMID |
[76] |
WANG C, ZHAO H, WANG J, et al. Atomic Fe hetero-layered coordination between g-C3N4 and graphene nanomeshes enhances the ORR electrocatalytic performance of zinc-air batteries. Journal of Materials Chemistry A, 2019,7(4):1451-1458.
DOI URL |
[77] |
XU L, HUANG W Q, WANG L L, et al. Insights into enhanced visible-light photocatalytic hydrogen evolution of g-C3N4 and highly reduced graphene oxide composite: the role of oxygen. Chemistry of Materials, 2015,27(5):1612-1621.
DOI URL |
[78] | LI L, YU Y. Black phosphorus field-effect transistors. 2014,9(5):372-377. |
[79] |
SA B, LI Y L, QI J, et al. Strain engineering for phosphorene: the potential application as a photocatalyst. The Journal of Physical Chemistry C, 2014,118(46):26560-26568.
DOI URL |
[80] |
RAN J, ZHU B, QIAO S Z. Phosphorene co-catalyst advancing highly efficient visible-light photocatalytic hydrogen production. Angewandte Chemie International Edition, 2017,56(35):10373-10377.
DOI URL PMID |
[81] |
LIU H, DU Y, DENG Y, et al. Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chemical Society Reviews, 2015,44(9):2732-2743.
DOI URL PMID |
[82] |
LIU H, HU K, YAN D, et al. Recent advances on black phosphorus for energy storage, catalysis, and sensor applications. Advanced Materials, 2018,30(32):e1800295.
DOI URL PMID |
[83] |
JIANG Q, XU L, CHEN N, et al. Facile synthesis of black phosphorus: an efficient electrocatalyst for the oxygen evolving reaction. Angewandte Chemie International Edition, 2016,55(44):13849-13853.
DOI URL PMID |
[84] |
ZHU M, OSAKADA Y, KIM S, et al. Black phosphorus: a promising two dimensional visible and near-infrared-activated photocatalyst for hydrogen evolution. Applied Catalysis B: Environmental, 2017,217:285-292.
DOI URL |
[85] |
DING K, WEN L, HUANG S, et al. Electronic properties of red and black phosphorous and their potential application as photocatalysts. RSC Advances, 2016,6(84):80872-80884.
DOI URL |
[86] |
SHEN Z, SUN S, WANG W, et al. A black-red phosphorus heterostructure for efficient visible-light-driven photocatalysis. Journal of Materials Chemistry A, 2015,3(7):3285-3288.
DOI URL |
[87] |
NIU X, LI Y, SHU H, et al. Anomalous size dependence of optical properties in black phosphorus quantum dots. The Journal of Physical Chemistry Letters, 2016,7(3):370-375.
DOI URL PMID |
[88] |
ZHANG X, XIE H, LIU Z, et al. Black phosphorus quantum dots. Angewandte Chemie International Edition, 2015,54(12):3653-3657.
DOI URL PMID |
[89] |
SUN Z, XIE H, TANG S, et al. Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents. Angewandte Chemie International Edition, 2015,54(39):11526-11530.
DOI URL PMID |
[90] |
XU Y, WANG Z, GUO Z, et al. Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots. Advanced Optical Materials, 2016,4(8):1223-1229.
DOI URL |
[91] |
GAO J, ZHANG G, ZHANG Y W. The critical role of substrate in stabilizing phosphorene nanoflake: a theoretical exploration. J. Am. Chem. Soc., 2016,138(14):4763-4771.
DOI URL PMID |
[92] |
ZHU M, KIM S, MAO L, et al. Metal-free photocatalyst for H2 evolution in visible to near-infrared region: black phosphorus/graphitic carbon nitride. J. Am. Chem. Soc. 2017,139(37):13234-13242.
DOI URL PMID |
[93] |
DONG J, SHI Y, HUANG C, et al. A new and stable Mo-Mo2C modified g-C3N4 photocatalyst for efficient visible light photocatalytic H2 production. Applied Catalysis B: Environmental, 2019,243:27-35.
DOI URL |
[94] |
RAN J, GUO W, WANG H, et al. Metal-free 2D/2D phosphorene/g-C3N4 van der waals heterojunction for highly enhanced visible-light photocatalytic H2 production. Advanced Materials, 2018,30(25):e1800128.
DOI URL PMID |
[95] |
KONG L, JI Y, DANG Z, et al. g-C3N4 loading black phosphorus quantum dot for efficient and stable photocatalytic H2 generation under visible light. Advanced Functional Materials, 2018,28(22):1800668.
DOI URL |
[96] |
LEI W, MI Y, FENG R, et al. Hybrid 0D-2D black phosphorus quantum dots-graphitic carbon nitride nanosheets for efficient hydrogen evolution. Nano Energy, 2018,50:552-561.
DOI URL |
[97] |
HAN C, LI J, MA Z, et al. Black phosphorus quantum dot/g-C3N4 composites for enhanced CO2 photoreduction to CO. Science China Materials, 2018,61(9):1159-1166.
DOI URL |
[98] |
TSAI C, ABILD-PEDERSEN F, N RSKOV J K. Tuning the MoS2 edge-site activity for hydrogen evolution via support interactions. Nano Letters, 2014,14(3):1381-1387.
DOI URL |
[99] |
DENG D, YU L, PAN X, et al. Size effect of graphene on electrocatalytic activation of oxygen. Chemical Communications, 2011,47(36):10016-10018.
DOI URL |
[100] |
DREYER D R, JIA H P, BIELAWSKI C W. Graphene oxide: a convenient carbocatalyst for facilitating oxidation and hydration reactions. Angewandte Chemie, 2010,122(38):6965-6968.
DOI URL |
[101] |
GAO Y, MA D, WANG C, et al. Reduced graphene oxide as a catalyst for hydrogenation of nitrobenzene at room temperature. Chemical Communications, 2011,47(8):2432-2434.
DOI URL |
[102] |
GAO G, O’MULLANE A P, DU A. 2D MXenes: a new family of promising catalysts for the hydrogen evolution reaction. ACS Catalysis, 2017,7(1):494-500.
DOI URL |
[103] |
JIAO X, CHEN Z, LI X, et al. Defect-mediated electron-hole separation in one-unit-cell ZnIn2S4 layers for boosted solar-driven CO2 reduction. Journal of the American Chemical Society, 2017,139(22):7586-7594.
DOI URL PMID |
[104] |
DENG D, NOVOSELOV K S, FU Q, et al. Catalysis with two-dimensional materials and their heterostructures. Nature Nanotechnology, 2016,11:218.
DOI URL PMID |
[105] |
SHENG Z H, GAO H L, BAO W J, et al. Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells. Journal of Materials Chemistry, 2012,22(2):390-395.
DOI URL |
[106] |
XU H, CHENG D, CAO D, et al. A universal principle for a rational design of single-atom electrocatalysts. Nature Catalysis, 2018,1(5):339-348.
DOI URL |
[107] |
ZHAO J, CHEN Z. Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: a computational study. Journal of the American Chemical Society, 2017,139(36):12480-12487.
DOI URL PMID |
[108] |
CHEN X, ZHAO X, KONG Z, et al. Unravelling the electrochemical mechanisms for nitrogen fixation on single transition metal atoms embedded in defective graphitic carbon nitride. Journal of Materials Chemistry A, 2018,6(44):21941-21948.
DOI URL |
[109] |
WANG Y, ZHANG W, DENG D, et al. Two-dimensional materials confining single atoms for catalysis. Chinese Journal of Catalysis, 2017,38:1443-1453.
DOI URL |
[110] |
HUANG L L, ZOU Y Q, CHEN D W, et al. Electronic structure regulation on layered double hydroxides for oxygen evolution reaction. Chinese Journal of Catalysis, 2019,40(12):1822-1840.
DOI URL |
[111] | CUI X, XIAO J, WU Y, et al. A graphene composite material with single cobalt active sites: a highly efficient counter electrode for dye-sensitized solar cells. Angewandte Chemie International Edition, 2016,128(23):6820-6824. |
[112] |
ZHANG Y, WENG X, LI H, et al. Hexagonal boron nitride cover on Pt(111): a new route to tune molecule-metal interaction and metal-catalyzed reactions. Nano Letters, 2015,15(5):3616-3623.
DOI URL PMID |
[113] |
WANG H, CHEN S, YONG X, et al. Giant electron-hole interactions in confined layered structures for molecular oxygen activation. J. Am. Chem. Soc., 2017,139(13):4737-4742.
DOI URL PMID |
[114] |
FU Q, YANG F, BAO X. Interface-confined oxide nanostructures for catalytic oxidation reactions. Accounts of Chemical Research, 2013,46(8):1692-1701.
DOI URL PMID |
[115] |
LOW J, YU J, JARONIEC M, et al. Heterojunction photocatalysts. Advanced Materials, 2017,29(20):1601694.
DOI URL |
[116] |
LIAO J, SA B, ZHOU J, et al. Design of high-efficiency visible-light photocatalysts for water splitting: MoS2/AlN(GaN) heterostructures. The Journal of Physical Chemistry C, 2014,118(31):17594-17599.
DOI URL |
[117] |
GUO Z, MIAO N, ZHOU J, et al. Strain-mediated type-I/type-II transition in MXene/blue phosphorene van der Waals heterostructures for flexible optical/electronic devices. Journal of Materials Chemistry C, 2017,5(4):978-984.
DOI URL |
[118] |
ZHANG X, ZHANG Z, WU D, et al. Computational screening of 2D materials and rational design of heterojunctions for water splitting photocatalysts. Small Methods, 2018,2(5):1700359.
DOI URL |
[119] |
KONG Z, CHEN X, ONG W J, et al. Atomic-level insight into the mechanism of 0D/2D black phosphorus quantum dot/graphitic carbon nitride (BPQD/GCN) metal-free heterojunction for photocatalysis. Applied Surface Science, 2019,463:1148-1153.
DOI URL |
[1] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
[2] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[3] | CHEN Qiang, BAI Shuxin, YE Yicong. Highly Thermal Conductive Silicon Carbide Ceramics Matrix Composites for Thermal Management: a Review [J]. Journal of Inorganic Materials, 2023, 38(6): 634-646. |
[4] | LIN Junliang, WANG Zhanjie. Research Progress on Ferroelectric Superlattices [J]. Journal of Inorganic Materials, 2023, 38(6): 606-618. |
[5] | WU Lin, HU Minglei, WANG Liping, HUANG Shaomeng, ZHOU Xiangyuan. Preparation of TiHAP@g-C3N4 Heterojunction and Photocatalytic Degradation of Methyl Orange [J]. Journal of Inorganic Materials, 2023, 38(5): 503-510. |
[6] | NIU Jiaxue, SUN Si, LIU Pengfei, ZHANG Xiaodong, MU Xiaoyu. Copper-based Nanozymes: Properties and Applications in Biomedicine [J]. Journal of Inorganic Materials, 2023, 38(5): 489-502. |
[7] | YUAN Jingkun, XIONG Shufeng, CHEN Zhangwei. Research Trends and Challenges of Additive Manufacturing of Polymer-derived Ceramics [J]. Journal of Inorganic Materials, 2023, 38(5): 477-488. |
[8] | DU Jianyu, GE Chen. Recent Progress in Optoelectronic Artificial Synapse Devices [J]. Journal of Inorganic Materials, 2023, 38(4): 378-386. |
[9] | YANG Yang, CUI Hangyuan, ZHU Ying, WAN Changjin, WAN Qing. Research Progress of Flexible Neuromorphic Transistors [J]. Journal of Inorganic Materials, 2023, 38(4): 367-377. |
[10] | YOU Junqi, LI Ce, YANG Dongliang, SUN Linfeng. Double Dielectric Layer Metal-oxide Memristor: Design and Applications [J]. Journal of Inorganic Materials, 2023, 38(4): 387-398. |
[11] | QI Zhanguo, LIU Lei, WANG Shouzhi, WANG Guogong, YU Jiaoxian, WANG Zhongxin, DUAN Xiulan, XU Xiangang, ZHANG Lei. Progress in GaN Single Crystals: HVPE Growth and Doping [J]. Journal of Inorganic Materials, 2023, 38(3): 243-255. |
[12] | ZHANG Chaoyi, TANG Huili, LI Xianke, WANG Qingguo, LUO Ping, WU Feng, ZHANG Chenbo, XUE Yanyan, XU Jun, HAN Jianfeng, LU Zhanwen. Research Progress of ScAlMgO4 Crystal: a Novel GaN and ZnO Substrate [J]. Journal of Inorganic Materials, 2023, 38(3): 228-242. |
[13] | CHEN Kunfeng, HU Qianyu, LIU Feng, XUE Dongfeng. Multi-scale Crystallization Materials: Advances in in-situ Characterization Techniques and Computational Simulations [J]. Journal of Inorganic Materials, 2023, 38(3): 256-269. |
[14] | LIN Siqi, LI Airan, FU Chenguang, LI Rongbing, JIN Min. Crystal Growth and Thermoelectric Properties of Zintl Phase Mg3X2 (X=Sb, Bi) Based Materials: a Review [J]. Journal of Inorganic Materials, 2023, 38(3): 270-279. |
[15] | LIU Yan, ZHANG Keying, LI Tianyu, ZHOU Bo, LIU Xuejian, HUANG Zhengren. Electric-field Assisted Joining Technology for the Ceramics Materials: Current Status and Development Trend [J]. Journal of Inorganic Materials, 2023, 38(2): 113-124. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||