Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (1): 73-78.DOI: 10.15541/jim20190278
Special Issue: MAX相和MXene材料; MXene材料专辑(2020~2021)
Previous Articles Next Articles
WANG Chang-Ying1,LU Yu-Chang2,REN Cui-Lan2(),WANG Gang1,HUAI Ping2,3()
Received:
2019-06-06
Revised:
2019-09-03
Published:
2020-01-20
Online:
2019-10-25
About author:
WANG Chang-Ying (1988-), female, lecturer. E-mail:wcy58462006@126.com
Supported by:
CLC Number:
WANG Chang-Ying, LU Yu-Chang, REN Cui-Lan, WANG Gang, HUAI Ping. Theoretical Studies on the Modulation of the Electronic Property of Ti2CO2 by Electric Field, Strain and Charge States[J]. Journal of Inorganic Materials, 2020, 35(1): 73-78.
Fig. 1 (a) Geometrical structure of Ti2AlC MAX phase, (b) side view (upper panel) and top view (lower panel) of 2×2×1 Ti2C supercell, and (c) side view (upper panel) and top view (lower panel) of 2×2×1 Ti2CO2 supercell
Fig. 3 Band structures of 2×2×1 Ti2CO2 supercells with a carbon vacancy under various biaxial tension strains from 0 to 7%. The horizontal dashed lines are the Fermi level
Fig. S1 Total density of states for 2×2×1 Ti2CO2 supercells with a carbon vacancy under various biaxial tension strains from 0 to 7%. The horizontal dashed lines are the Fermi level
Fig. S2 Band structures of 2×2×1 Ti2CO2 supercells with a carbon vacancy under various uniaxial tension strains from 0 to 7%. The horizontal dashed lines are the Fermi level
Fig. 4 Effects of (a) 0, (b) +1, (c) +2, and (d) +3 charge states on the band structures of 2×2×1 Ti2CO2 supercells with a carbon vacancy. The horizontal dashed lines are the Fermi level
Fig. S3 The effects of (a) 0, (b) +1, (c) +2 and (d) +3 charge states on the band structures of 3×3×1 Ti2CO2 supercells with a carbon vacancy. And the effects of (e) 0, (f) +1, (g) +2 and (h) +3 charge states on the band structures of 4×4×1 Ti2CO2 supercells with a carbon vacancy. The horizontal dashed lines are the Fermi level
[1] |
FIORI G, BONACCORSO F, IANNACCONE G , et al. Electronics based on two-dimensional materials. Nature Nanotechnology, 2014,9:768-779.
DOI URL |
[2] |
XIA F, WANG H, XIAO D , et al. Two-dimensional material nanophotonics. Nature Photonics, 2014,8:899-907.
DOI URL |
[3] |
AKINWANDE D, PETRONE N, HONE J . Two-dimensional flexible nanoelectronics. Nature Communications, 2014,5:5678.
DOI URL PMID |
[4] |
BARSOUM M W . The Mn+1AXn phases: a new class of solids. Progress in Solid State Chemistry, 2000,28:201-281.
DOI URL PMID |
[5] |
LI M, LI Y B, LUO K , et al. Synthesis of novel MAX Phase Ti3ZnC2 via A-site-element-substitution approach. Journal of Inorganic Materials, 2019,34:60-64.
DOI URL |
[6] |
NAGUIB M, KURTOGLU M, PRESSER V , et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 2011,23:4248-4253.
DOI URL PMID |
[7] |
ZHAO Y, ZHAO J . Functional group-dependent anchoring effect of titanium carbide-based MXenes for lithium-sulfur batteries: a computational study. Applied Surface Science, 2017,412:591-598.
DOI URL |
[8] |
SIM E S, YI G S, JE M , et al. Understanding the anchoring behavior of titanium carbide-based MXenes depending on the functional group in LiS batteries: a density functional theory study. Journal of Power Sources, 2017,342:64-69.
DOI URL |
[9] |
ZHANG X, LEI J, WU D , et al. A Ti-anchored Ti2CO2 monolayer (MXene) as a single-atom catalyst for CO oxidation. Journal of Materials Chemistry A, 2016,4:4871-4876.
DOI URL |
[10] |
ZHANG X, ZHANG Z, LI J , et al. Ti2CO2 MXene: a highly active and selective photocatalyst for CO2 reduction. Journal of Materials Chemistry A, 2017,5:12899-12903.
DOI URL |
[11] |
ZHAO M Q, REN C E, LING Z , et al. Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Advanced Materials, 2015,27:339-345.
DOI URL PMID |
[12] |
XU Q, DING L, WEN Y , et al. High photoluminescence quantum yield of 18.7% by using nitrogen-doped Ti3C2 MXene quantum dots. Journal of Materials Chemistry C, 2018,6:6360-6369.
DOI URL |
[13] |
ZHANG L, SU W, SHU H , et al. Tuning the photoluminescence of large Ti3C2Tx MXene flakes. Ceramics International, 2019,45(9):11468-11474.
DOI URL |
[14] |
ZHA X H, ZHOU J, ZHOU Y , et al. Promising electron mobility and high thermal conductivity in Sc2CT2(T=F, OH) MXenes. Nanoscale, 2016,8:6110-6117.
DOI URL PMID |
[15] |
ZHA X H, REN J C, FENG L , et al. Bipolar magnetic semiconductors among intermediate states during the conversion from Sc2C(OH)2 to Sc2CO2 MXene. Nanoscale, 2018,10:8763-8771.
DOI URL PMID |
[16] |
ZHOU J, ZHA X H, YILDIZHAN M , et al. Two-dmensional hydroxyl-functionalized and carbon-deficient scandium carbide, ScCxOH, a direct band gap semiconductor. ACS Nano, 2019,13:1195-1203.
DOI URL PMID |
[17] |
FAN M, WANG L, ZHANG Y , et al. Research progress of MXene materials in radioactive element and heavy metal ion sequestration. Scientia Sinica Chimica, 2019,49:27.
DOI URL |
[18] |
NAGUIB M, MASHTALIR O, CARLE J , et al. Two-dimensional transition metal carbides. ACS Nano, 2012,6:1322-1331.
DOI URL PMID |
[19] |
URBANKOWSKI P, ANASORI B, MAKARYAN T , et al. Synthesis of two-dimensional titanium nitride Ti4N3(MXene). Nanoscale, 2016,8:11385-11391.
DOI URL PMID |
[20] |
ZHOU J, ZHA X, CHEN F Y , et al. A two-dimensional zirconium carbide by selective etching of Al3C3 from nanolaminated Zr3Al3C5. Angewandte Chemie International Edition, 2016,55:5008-5013.
DOI URL PMID |
[21] |
ZHOU J, ZHA X, ZHOU X , et al.Synthesis and electrochemical properties of two-dimensional hafnium carbide. ACS Nano, 2017,11(4):3841-3850.
DOI URL PMID |
[22] |
NAGUIB M, HALIM J, LU J , et al.New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. Journal of the American Chemical Society, 2013,135:15966-15969.
DOI URL PMID |
[23] |
HALIM J, KOTA S, LUKATSKAYA M R , et al.Synthesis and characterization of 2D molybdenum carbide (MXene). Advanced Functional Materials, 2016,26:3118-3127.
DOI URL PMID |
[24] |
GHIDIU M, NAGUIB M, SHI C , et al. Synthesis and characterization of two-dimensional Nb4C3(MXene). Chemical Communications, 2014,50:9517-9520.
DOI URL |
[25] |
LIU G Q, JIANG X J, ZHOU J , et al. Synthesis and theoretical study of conductive Mo1.33CT2 MXene. Journal of Inorganic Materials, 2019,34:775-780.
DOI URL |
[26] |
KHAZAEI M, ARAI M, SASAKI T , et al.Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Advanced Functional Materials, 2013,23(17):2185-2192.
DOI URL |
[27] |
LI M, LU J, LUO K , et al. Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. Journal of the American Chemical Society, 2019,141:4730-4737.
DOI URL PMID |
[28] |
ZHANG H, YANG G, ZUO X , et al. Computational studies on the structural, electronic and optical properties of graphene-like MXenes (M2CT2, M = Ti, Zr, Hf; T = O, F, OH) and their potential applications as visible-light driven photocatalysts. Journal of Materials Chemistry A, 2016,4:12913-12920.
DOI URL |
[29] |
UĞUR Y, AYBERK Ö, NIHANi K P , et al.Vibrational and mechanical properties of single layer MXene structures: a first- principles investigation. Nanotechnology, 2016,27:335702.
DOI URL PMID |
[30] |
CHAKRABORTY P, DAS T, NAFDAY D , et al. Manipulating the mechanical properties of Ti2C MXene: effect of substitutional doping. Physical Review B, 2017,95:184106.
DOI URL |
[31] |
GUO Z, ZHOU J, SI C , et al. Flexible two-dimensional Tin+1Cn (n= 1, 2 and 3) and their functionalized MXenes predicted by density functional theories. Physical Chemistry Chemical Physics, 2015,17:15348-15354.
DOI URL PMID |
[32] |
MAPASHA R E, MOLEPO M P, ANDREW R C , et al.Defect charge states in Si doped hexagonal boron-nitride monolayer. Journal of Physics: Condensed Matter, 2016,28:055501.
DOI URL PMID |
[33] |
SALEHI S, SAFFARZADEH A . Atomic defect states in monolayers of MoS2 and WS2. Surface Science, 2016,651:215-221.
DOI URL PMID |
[34] |
FENG L, ZHA X H, LUO K , et al. Structures and mechanical and electronic properties of the Ti2CO2 MXene incorporated with neighboring elements (Sc, V, B and N). Journal of Electronic Materials, 2017,46:2460-2466.
DOI URL |
[35] |
LI J, DU Y, HUO C , et al. Thermal stability of two-dimensional Ti2C nanosheets. Ceramics International, 2015,41:2631-2635.
DOI URL |
[36] |
ZHOU Y, ZHAI G, YAN T , et al. Effects of different surface functionalization and doping on the electronic transport properties of M2CTx-M2CO2 heterojunction devices. The Journal of Physical Chemistry C, 2018,122:14908-14917.
DOI URL |
[37] |
ZHANG Y, ZHA X H, LUO K , et al. Tuning the electrical conductivity of Ti2CO2 MXene by varying the layer thickness and applying strains. The Journal of Physical Chemistry C, 2019,123:6802-6811.
DOI URL |
[38] |
ZHOU Y, LUO K, ZHA X , et al. Electronic and transport properties of Ti2CO2 MXene nanoribbons. The Journal of Physical Chemistry C, 2016,120:17143-17152.
DOI URL |
[39] |
WANG C Y, H H, GUO Y L . Stabilities and electronic properties of vacancy-doped Ti2CO2. Computational Materials Science, 2019,159:127-135.
DOI URL |
[40] |
KRESSE G, FURTHMÜLLER J . Efficient iterative schemes for ab initi. total-energy calculations using a plane-wave basis set. Physical Review B, 1996,54:11169-11186.
DOI URL PMID |
[41] |
BLÖCHL P E . Projector augmented-wave method. Physical Review B, 1994,50:17953-17979.
DOI URL PMID |
[42] |
PERDEW J P, BURKE K, ERNZERHOF M . Generalized gradient approximation made simple. Physical Review Letters, 1996,77:3865-3868.
DOI URL PMID |
[43] |
BANDYOPADHYAY A, GHOSH D, PATI S K . Effects of point defects on the magnetoelectronic structures of MXenes from first principles. Physical Chemistry Chemical Physics, 2018,20:4012-4019.
DOI URL PMID |
[44] |
XIE Y, KENT P R C . Hybrid density functional study of structural and electronic properties of functionalized Ti n+1Xn(X=C,N) monolayersPhysical Review B, 2013,87:235441.
DOI URL |
[45] |
YU X F, CHENG J B, LIU Z B , et al. The band gap modulation of monolayer Ti2CO2 by strain. RSC Advances, 2015,5:30438-30444.
DOI URL |
[1] | LIN Junliang, WANG Zhanjie. Research Progress on Ferroelectric Superlattices [J]. Journal of Inorganic Materials, 2023, 38(6): 606-618. |
[2] | CHEN Lei, HU Hailong. Evolution of Electric Field and Breakdown Damage Morphology for Flexible PDMS Based Dielectric Composites [J]. Journal of Inorganic Materials, 2023, 38(2): 155-162. |
[3] | LIU Yan, ZHANG Keying, LI Tianyu, ZHOU Bo, LIU Xuejian, HUANG Zhengren. Electric-field Assisted Joining Technology for the Ceramics Materials: Current Status and Development Trend [J]. Journal of Inorganic Materials, 2023, 38(2): 113-124. |
[4] | MA Xinquan, LI Xibao, CHEN Zhi, FENG Zhijun, HUANG Juntong. BiOBr/ZnMoO4 Step-scheme Heterojunction: Construction and Photocatalytic Degradation Properties [J]. Journal of Inorganic Materials, 2023, 38(1): 62-70. |
[5] | WEN Zhiqin, HUANG Binrong, LU Taoyi, ZOU Zhengguang. Pressure on the Structure and Thermal Properties of PbTiO3: First-principle Study [J]. Journal of Inorganic Materials, 2022, 37(7): 787-794. |
[6] | YANG Huiping, ZHOU Xuefan, FANG Haojie, ZHANG Xiaoyun, LUO Hang, ZHANG Dou. Field-induced Strain Property of Lead-free Ferroelectric Ceramics Based on Sodium Bismuth Titanate [J]. Journal of Inorganic Materials, 2022, 37(6): 603-610. |
[7] | XIAO Meixia, LI Miaomiao, SONG Erhong, SONG Haiyang, LI Zhao, BI Jiaying. Halogenated Ti3C2 MXene as High Capacity Electrode Material for Li-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(6): 660-668. |
[8] | YUAN Gang, MA Xinguo, HE Hua, DENG Shuiquan, DUAN Wangyang, CHENG Zhengwang, ZOU Wei. Plane Strain on Band Structures and Photoelectric Properties of 2D Monolayer MoSi2N4 [J]. Journal of Inorganic Materials, 2022, 37(5): 527-533. |
[9] | LIU Dingwei, ZENG Jiangtao, ZHENG Liaoying, MAN Zhenyong, RUAN Xuezheng, SHI Xue, LI Guorong. High Piezoelectric Property and Low Electric Field-strain Hysteresis of BiAlO3-doped PZT Ceramics [J]. Journal of Inorganic Materials, 2022, 37(12): 1365-1370. |
[10] | PENG Junhui, TIKHONOV Evgenii. Vacancy on Structures, Mechanical and Electronic Properties of Ternary Hf-Ta-C System: a First-principles Study [J]. Journal of Inorganic Materials, 2022, 37(1): 51-57. |
[11] | ZHU Zimin, ZHANG Minhui, ZHANG Xuanyu, YAO Aihua, LIN Jian, WANG Deping. In Vitro Mineralization Property of Borosilicate Bioactive Glass under DC Electric Field [J]. Journal of Inorganic Materials, 2021, 36(9): 1006-1012. |
[12] | YAN Yuxing, WANG Fan, ZHANG Juexuan, LI Fushao. First Principles Study of Electronic Structure and Optical Properties of ZnNb2O6 with Vacancy Defects [J]. Journal of Inorganic Materials, 2021, 36(3): 269-276. |
[13] | ZHAO Linyan, LIU Yangsi, XI Xiaoli, MA Liwen, NIE Zuoren. First-principles Study on Nanoscale Tungsten Oxide: a Review [J]. Journal of Inorganic Materials, 2021, 36(11): 1125-1136. |
[14] | LIN Qimin, CUI Jiangong, YAN Xin, YUAN Xueguang, CHEN Xiaoyu, LU Qichao, LUO Yanbin, HUANG Xue, ZHANG Xia, REN Xiaomin. First-principles Study on Electronic Structure and Optical Properties of Single Point Defect Graphene Oxide [J]. Journal of Inorganic Materials, 2020, 35(10): 1117-1122. |
[15] | LÜ Xiaoxu, JIANG Zhuyu, ZHOU Yiran, QI Zhe, ZHAO Wenqing, JIAO Jian. Effect of BN/SiC Multilayered Interphases on Mechanical Properties of SiC Fibers and Minicomposites by PIP [J]. Journal of Inorganic Materials, 2020, 35(10): 1099-1104. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||