Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (1): 19-28.DOI: 10.15541/jim20190272
Special Issue: MAX相和MXene材料; 副主编黄庆研究员专辑; 计算材料论文精选(2020); 【虚拟专辑】分离膜,复相陶瓷(2020~2021)
Previous Articles Next Articles
HUANG Ye-Yan1,2,XU Kai1,WU Bo2,LI Peng1,CHANG Ke-Ke1(),HUANG Feng1,HUANG Qing1
Received:
2019-06-03
Revised:
2019-07-22
Published:
2020-01-20
Online:
2019-10-23
About author:
HUANG Ye-Yan(1995-), female, PhD candidate. E-mail:huangyeyan@nimte.ac.cn
Supported by:
CLC Number:
HUANG Ye-Yan, XU Kai, WU Bo, LI Peng, CHANG Ke-Ke, HUANG Feng, HUANG Qing. Review on Metastable Phase Diagrams: Application Roles in Specialty Ceramic Coatings[J]. Journal of Inorganic Materials, 2020, 35(1): 19-28.
Fig. 1 The phase diagram of TiAlN (a) The stable TiN-AlN pseudo binary phase diagram[61], among which the Al solubilities of fcc phase is negligible; (b) The critical Al solubilities (xmax) in Ti1-xAlxN by different calculation methods compared with the experimental data[35-37, 40-41, 49-52, 61-66]
Fig. 3 Structure of the coatings deposited at room temperature compared with the phase diagrams of (a) Al-Cu[59,71], (b) Al-Ni[59,72] and (c) Al-Fe[59,70]
Fig. 4 (a) Diffusion distance versus temperature of Cu-11.5at% Sn obtained by Saunders and Miodownik[60] based on diffusion equation; (b) Diffusion distance versus temperature of Cu-19.5at% Sn[60] obtained by Saunders and Miodownik based on diffusion equation; (c) Phase diagram of the Cu-Sn system[73]
Fig. 6 (a) Calculated and predicted metastable Cu-W phase formation diagram compared with the experimental data[58]; (b) Calculated and predicted metastable Cu-V phase formation diagram compared with the experimental data[58]; (c) Phase diagram of the Cu-W system[74]; (d) Phase diagram of the Cu-V system[75]
Fig. 7 (a) Phase diagram of the Pt-Ir[86] system; (b) Phase diagram of the Pt-Au system[87]; (c) Phase formation of the Pt-Ir[85] sputtered thin films; (d) Phase formation of the Pt-Au[85] sputtered thin films
Fig. 8 Metastable Ti1-xAlxN phase formation diagrams (a) The predicted diagrams at different power densities; (b) The predicted diagram compared with the experimental data with power density of 2.3 W?cm-2 at 100-550 ℃; (c) The predicted diagram compared with the experimental data with power density of 4.6 W?cm-2 at 100-550 ℃; (d) The predicted diagram compared with the experimental data with power density of 6.8 W?cm-2 at 100-550 ℃
[1] |
ENDRINO J C, ÅRHAMMAR C, GUTIÉRREZ C , et al. Spectral evidence of spinodal decomposition, phase transformation and molecular nitrogen formation in supersaturated TiAlN films upon annealing. Acta Materialia, 2011,59(2):6287-6296.
DOI URL |
[2] |
RACHBAUER R, GENGLER J J, VOEVODIN A A , et al. Temperature driven evolution of thermal, electrical, and optical properties of Ti-Al-N coatings. Acta Materialia, 2012,60:2091-2096.
DOI URL PMID |
[3] |
MAYRHOFER P, RACHBAUER R, HOLEC D , et al. Protective transition metal nitride coatings. Comprehensive Materials Processing, 2014,4:355-387.
DOI URL PMID |
[4] |
NORRBY N, ROGSTRÖM L JOHANSSON-JÕESAAR M P , et al. In situ X-ray scattering study of the cubic to hexagonal transformation of AlN in Ti1-xAlxN. Acta Materialia, 2014,73:205-214.
DOI URL |
[5] |
SCHRAMM I C, JÖESAAR M P J, JENSEN J , et al. Impact of nitrogen vacancies on the high temperature behavior of (Ti1-xAlx)Ny alloys. Acta Materialia, 2016,119:218-228.
DOI URL |
[6] |
ZOU H K, CHEN L, CHANG K K , et al. Enhanced hardness and age-hardening of TiAlN coatings through Ru addition. Scripta Materialia, 2019,162:382-386.
DOI URL |
[7] |
RAJAN S T, KARTHIKA M, BENDAVID A , et al. Apatite layer growth on glassy Zr48Cu36Al8Ag8 sputtered titanium for potential biomedical applications. Applied Surface Science, 2016,369:501-509.
DOI URL |
[8] |
CAI C N, ZHANG C, SUN Y S , et al. ZrCuFeAlAg thin film metallic glass for potential dental applications. Intermetallics, 2017,86:80-87.
DOI URL |
[9] |
LEE C M, CHU J P, CHANG W Z , et al. Fatigue property improvements of Ti-6Al-4V by thin film coatings of metallic glass and TiN: a comparison study. Thin Solid Films, 2014,561:33-37.
DOI URL |
[10] |
TSAI P H, LIN Y Z, LI J B , et al. Sharpness improvement of surgical blade by means of ZrCuAlAgSi metallic glass and metallic glass thin film coating. Intermetallics, 2012,31:127-131.
DOI URL |
[11] |
TSAI P H, LI T H, HSU K T , et al. Effect of coating thickness on the cutting sharpness and durability of Zr-based metallic glass thin film coated surgical blades. Thin Solid Films, 2016,618:36-41.
DOI URL |
[12] |
CHU J P, JANG J S C, HUANG J C , et al. Thin film metallic glasses: unique properties and potential applications. Thin Solid Films, 2012,520:5097-5122.
DOI URL |
[13] | GORDON R G . Criteria for choosing transparent conductors. MRS Bulletin, 2000,25:52-57. |
[14] |
CHENG C H, TING J M . Transparent conducting GZO, Pt/GZO, and GZO/Pt/GZO thin films. Thin Solid Films, 2007,516:203-207.
DOI URL PMID |
[15] |
KIM D . Improved electrical and optical properties of GZO films with a thin TiO2 buffer layer deposited by RF magnetron sputtering. Ceramics International, 2014,40:1457-1460.
DOI URL |
[16] |
WANG H L, SUN Y H, FANG L , et al. Growth and characterization of high transmittance GZO films prepared by Sol-Gel method. Thin Solid Films, 2016,615:19-24.
DOI URL |
[17] |
LU L F, SHEN H L, FENG J , et al. The enhanced conductivity of AZO thin films on soda lime glass with an ultrathin Al2O3 buffer layer. Physica B, 2010,405:3320-3323.
DOI URL |
[18] |
SHEN H L, ZHANG H, LU L F , et al. Preparation and properties of AZO thin films on different substrates. Progress in Natural Science: Materials International, 2010,20:44-48.
DOI URL |
[19] | SUBRAMANYAM T K, GOUTHAM P, PAVAN KUMAR S , et al. Optimization of sputtered AZO thin films for device application. Materials Today: Proceedings, 2018,5:10851-10859. |
[20] | LÜ K, ZHU B L, LI K , et al. Effect of hydrogen and Cu interlayer on the optical and electrical properties of GZO thin film. Journal of Inorganic Materials, 2014,29(5):494-497. |
[21] | CHEN D, LÜ J G, HUANG J Y , et al. Performances of GaN-based LEDs with AZO films as transparent electrodes. Journal of Inorganic Materials, 2013,28(6):650-652. |
[22] | QIN X J, HAN S H Z, ZHAO L , et al. Fabrication of transparent conductive Al-doped ZnO thin films by aerosol-assisted chemical vapour deposition. Journal of Inorganic Materials, 2011,26(6):608-611. |
[23] |
AYDOGAN E, WEAVER J S, MALOY S A , et al. Microstructure and mechanical properties of FeCrAl alloys under heavy ion irradiations. Journal of Nuclear Materials, 2018,503:250-262.
DOI URL |
[24] |
DRYEPONDT S, UNOCIC K A, HOELZER D T , et al. Development of low-Cr ODS FeCrAl alloys for accident-tolerant fuel cladding. Journal of Nuclear Materials, 2018,501:59-71.
DOI URL |
[25] |
GUSSEV M N, CAKMAK E, FIELD K G , et al. Impact of neutron irradiation on mechanical performance of FeCrAl alloy laser-beam weldments. Journal of Nuclear Materials, 2018,504:221-233.
DOI URL |
[26] |
HOGGAN R E, HE L F, HARP J M , et al. Interdiffusion behavior of U3Si2 with FeCrAl via diffusion couple studies. Journal of Nuclear Materials, 2018,502:356-369.
DOI URL |
[27] |
JIN D L, NI N, GUO Y , et al. Corrosion of the bonding at FeCrAl/ Zr alloy interfaces in steam. Journal of Nuclear Materials, 2018,508:411-422.
DOI URL |
[28] |
PARK D, MOUCHE P A, ZHONG W C , et al. TEM/STEM study of zircaloy-2 with protective FeAl(Cr) layers under simulated BWR environment and high-temperature steam exposure. Journal of Nuclear Materials, 2018,502:95-105.
DOI URL |
[29] |
TANG C C, JIANU A, STEINBRUECK M , et al. Influence of composition and heating schedules on compatibility of FeCrAl alloys with high-temperature steam. Journal of Nuclear Materials, 2018,511:496-507.
DOI URL |
[30] |
CHANG K K, MENG F P, GE F F , et al. Theory-guided bottom- up design of the FeCrAl alloys as accident tolerant fuel cladding materials. Journal of Nuclear Materials, 2019,516:63-72.
DOI URL |
[31] |
CAIRNEY J M, HARRIS S G, MUNROE P R , et al. Transmission electron microscopy of TiN and TiAlN thin films using specimens prepared by focused ion beam milling. Surface and Coatings Technology, 2004,183:239-246.
DOI URL |
[32] |
RACHBAUER R, STERGAR E, MASSL S , et al. Three-dimensional atom probe investigations of Ti-Al-N thin films. Scripta Materialia, 2009,61:725-728.
DOI URL |
[33] | WEBER F R, FONTAINE F, SCHEIB M, , et al. Cathodic arc evaporation of (Ti, Al) N coatings and (Ti, Al) N/TiN multilayer-coatings-correlation between lifetime of coated cutting tools, structural and mechanical film properties. Surface and Coatings Technology, 2004,177-178:227-232 |
[34] |
MÜNZ W D . A new alternative to TiN coatings. Journal of Vacuum Science and Technology A, 1986,4(6):2717-2725.
DOI URL PMID |
[35] |
WAHLSTRÖM U, HULTMAN L, SUNDGREN J E , et al. Crystal growth and microstructure of polycrystalline Ti1-xAlxN alloy films deposited by ultra-high-vacuum dual-target magnetron sputtering. Thin Solid Films, 1993,235:62-70.
DOI URL |
[36] |
ZHOU M, MAKINO Y, NOSE M , et al. Phase transition and properties of Ti-Al-N thin films prepared by rf-plasma assisted magnetron sputtering. Thin Solid Films, 1999,339:203-208.
DOI URL |
[37] |
HÖRLING A, HULTMAN L, ODÉN M , et al. Mechanical properties and machining performance of Ti1-xAlxN-coated cutting tools. Surface and Coatings Technology, 2005,191:384-392.
DOI URL PMID |
[38] |
KUTSCHEJ K, MAYRHOFER P, KATHREIN M , et al. Structure, mechanical and tribological properties of sputtered Ti1-xAlxN coatings with 0.5≤x≤0.75. Surface and Coatings Technology, 2005,200:2358-2365.
DOI URL |
[39] |
RAFAJA D, POKLAD A, SCHREIBER G , et al. On the preferred orientation in Ti1-xAlxN and Ti1-x-yAlxSiyN thin films. Zeitschrift für Metallkunde, 2005,96:738-742.
DOI URL PMID |
[40] |
GRECZYNSKI G, LU J, JOHANSSON M , et al. Role of Tin + and Aln + ion irradiation(n=1, 2) during Ti1-xAlxN alloy film growth in a hybrid HIPIMS/magnetron mode. Surface and Coatings Technology, 2012,206:4202-4211.
DOI URL |
[41] |
GROSSMANN B, SCHALK N, CZETTL C , et al. Phase composition and thermal stability of arc evaporated Ti1-xAlxN hard coatings with 0.4≤x≤0.67. Surface and Coatings Technology, 2017,309:687-693.
DOI URL |
[42] |
HANS M, MUSIC D, CHEN Y T , et al. Crystallite size-dependent metastable phase formation of TiAlN coatings. Scientific Reports, 2017,7(16096):1-7.
DOI URL PMID |
[43] | SPENCER P, HOLLECK H . Application of a thermochemical data-bank system to the calculation of metastable phase formation during PVD od carbide, nitride and boride coatings. High Temperature Science, 1990,27:295-309. |
[44] |
STOLTEN H, SPENCER P, NEUSCHÜTZ D , et al. Estimation of formation enthalpies for transition metal mono nitrides, carbides and oxides. Journal de Chimie Physique, 1993,90:209-219.
DOI URL |
[45] |
CHEN Q, SUNDMAN B . Thermodynamic assessment of the Ti-Al-N system. Journal of Phase Equilibria, 1998,19(20):146-160.
DOI URL |
[46] | ZENG K J, SCHMID-FETAER R . Thermodynamic Modeling and Applications of the Ti-Al-N Phase Diagram. Thermodynamics of Alloy Formation, 1997, 275-293. |
[47] | SPENCER P . Thermodynamic prediction of metastable coating structures in PVD processes. Zeitschrift für Metallkunde, 2001,92:1145-1150. |
[48] |
HUGOSSON H W, HÖGBERG H, ALGREN M , et al. Theory of the effects of substitutions on the phase stabilities of Ti1-xAlxN. Journal of Applied Physics, 2003,93(8):4505-4511.
DOI URL |
[49] | MAYRHOFER P, MUSIC D, SCHNEIDER J , et al. Influence of the Al distribution on the structure, elastic properties, and phase stability of supersaturated Ti1-xAlxN. Journal of Applied Physics, 2006,100:1-5. |
[50] |
HOLEC D, ROVERE F, MAYRHOFER P H , et al. Pressure- dependent stability of cubic and wurtzite phases within the TiN-AlN and CrN-AlN systems. Scripta Materialia, 2010,62:349-352.
DOI URL |
[51] |
EUCHNER H, MAYRHOFER P . Vacancy-dependent stability of cubic and wurtzite Ti1-xAlxN. Surface and Coatings Technology, 2015,275:214-218.
DOI URL PMID |
[52] |
SHULUMBA N, HELLMAN O, RAZA Z , et al. Lattice vibrations change the solid solubility of an alloy at high temperatures. Physical Review Letters, 2016,117(11):1-6.
DOI URL PMID |
[53] |
SANGIOVANNI D, EDSTRÖM D, HULTMAN L , et al. Dynamics of Ti, N, and TiNx (x= 1-3) admolecule transport on TiN (001) surfaces. Physical Review B, 2012,8:1-10.
DOI URL |
[54] |
SANGIOVANNI D, EDSTRÖM D, HULTMAN L , et al. Ab initio.and classical molecular dynamics simulations of N2 desorption from TiN (001) surfaces. Surface Science, 2014,624:25-31.
DOI URL |
[55] | SANGIOVANNI D, ALLING B, STENETEG P , et al. Self- interstitial diffusion, and Frenkel-pair formation/dissociation in B1 TiN studied by ab initio and classical molecular dynamics with optimized potentials. Physical Review B, 2015,91:1-17. |
[56] | ALLING B, STENETEG P, THOLANDER C , et al. Configurational disorder effects on adatom mobilities on Ti1-xAlxN (001) surfaces from first principles. Physical Review B, 2012,85(24):1-5. |
[57] |
CHANG K K, TO BABEN M, MUSIC D , et al. Estimation of the activation energy for surface diffusion during metastable phase formation. Acta Materialia, 2015,98:135-140.
DOI URL |
[58] |
CHANG K K, MUSIC D, TO BABEN M , et al. Modeling of metastable phase formation diagrams for sputtered thin films. Science and Technology of Advanced Materials, 2016,17:210-219.
DOI URL PMID |
[59] | CANTOR B, CAHN R . Metastable alloy phases by co-sputtering. Acta Materialia, 1976,24:845-852. |
[60] |
SAUNDERS N, MIODOWNIK A P . Phase formation in co-deposited metallic alloy thin flms. Journal of Materials Science, 1987,22:629-637.
DOI URL PMID |
[61] |
LIU S D, CHANG K K, MRÁZ S , et al. Modeling of metastable phase formation for sputtered Ti1-xAlxN thin films. Acta Materialia, 2019,165:615-625.
DOI URL PMID |
[62] |
KIM K H, LEE S H . Comparative studies of TiN and Ti1-xAlxN by plasma-assisted chemical vapor deposition using a TiCl4/AlCl3/N2/ H2/Ar gas mixture. Thin Solid Films, 1996,283:165-170.
DOI URL |
[63] |
LEE S H, KIM B J, KIM H H , et al. Structural analysis of AlN and (Ti1-xAlx) N coatings made by plasma enhanced chemical vapor deposition. Journal of Applied Physics, 1996,80(3):1469-1473.
DOI URL |
[64] | PRANGE R, CREMER R, NEUSCHÜTZ D , et al. Plasma- enhanced CVD of Plasma- enhanced CVD of (Ti,Al) N films from chloridic precursors in a DC glow discharge. Surface and Coatings Technology 2000, 133-134:208-214. |
[65] |
ENDLER I, HÖHN M, HERRMANN M , et al. Novel aluminum- rich Ti1-xAlxN coatings by LPCVD. Surface and Coatings Technology, 2008,203:530-533.
DOI URL PMID |
[66] |
TODT T, ZALESAK J, DANIEL R , et al. Al-rich cubic Al0. 8Ti0. 2N coating with self-organized nano-lamellar microstructure: thermal and mechanical properties. Surface and Coatings Technology, 2016,291:89-93.
DOI URL |
[67] | GROVENOR C R M, HENTZELL H T G, SMITH D A , et al. The development of grain structure during growth of metallic films. Acta Materialia The development of grain structure during growth of metallic films. Acta Materialia, 1984,32(5):(5):773-781. |
[68] |
PETROV I, BARNA P B, HULTMAN L , et al. Microstructural evolution during film growth. Journal of Vacuum Science & Technology A, 2003,21(5):S117-S128.
DOI URL PMID |
[69] | EINSTEIN A . Elementare teorie der brownschen bewegung. Z Elektrochem, 1908,14:371-381. |
[70] |
SUNDMAN B, OHNUMA I, DUPIN N , et al. An assessment of the entire Al-Fe system including D03 ordering. Acta Materialia, 2009,57:2896-2908.
DOI URL |
[71] |
LIANG S M, SCHMID-FETZER R . Thermodynamic assessment of the Al-Cu-Zn system, part II: Al-Cu binary system. CALPHAD, 2015,51:252-260.
DOI URL |
[72] |
ZHOU C Y, CUI J X, GUO C P , et al. Thermodynamic description of the Al-Ge-Ni system over the whole composition and temperature ranges. CALPHAD, 2017,58:138-150.
DOI URL |
[73] |
LI M, DU Z M, GUO C , et al. Thermodynamic optimization of the Cu-Sn and Cu-Nb-Sn systems. Journal of Alloys and Compounds, 2009,477:104-117.
DOI URL |
[74] |
SUBRAMANINA P R, LAUGHLIN D E . Cu-W (copper tungsten). Indian Institute of Metals, 1991,12:76-79.
DOI URL PMID |
[75] |
ZHAO J R, DU Y, ZHANG L J , et al. Thermodynamic reassessment of the Cu-V system supported by key experiments. CALPHAD, 2008,32:252-255.
DOI URL |
[76] |
WEILAND R, LUPTON D F, FISCHER B , et al. High-temperature mechanical properties of the platinum group metals. Platinum Metals Review, 2006,50(4):158-170.
DOI URL PMID |
[77] |
GANSKE G, SLAVCHEVA E, VAN OOYEN A , et al. Sputtered platinum-iridium layers as electrode material for functional electrostimulation. Thin Solid Films, 2011,519:3965-3970.
DOI URL |
[78] |
TSENG S F, LEE C T, Huang K C , et al. Mechanical properties of Pt-Ir and Ni-Ir binary alloys for glass-molding dies coating. Journal of Nanoscience and Nanotechnology, 2011,11(10):8682-8688.
DOI URL |
[79] |
YI A Y, JAIN A . Compression molding of aspherical glass lenses-a combined experimental and numerical analysis. Journal of the American Ceramic Society, 2005,88(3):579-586.
DOI URL |
[80] | KLOCKE F, DAMBON O, YI A Y , et al. Process Chain for the Replication of Complex Optical Glass Components. Berlin Heidelberg: Springer, 2013: 119-132. |
[81] | MA K J, CHIEN H H, CHUAN W H , et al. Design of protective coatings for glass lens molding. Key Engineering Materials Design of protective coatings for glass lens molding. Key Engineering Materials, 2008,364-366:655-661. |
[82] |
KLOCKE F, DAMBON O, GEORGIADIS K , et al. Comparison of nitride and noble metal coatings for precision glass molding tools. Key Engineering Materials, 2010,438:9-6.
DOI URL |
[83] |
BOBZIN K, BAGCIVAN N, EWERING M , et al. Influence of interlayer thickness of a thin noble metal MSIP-PVD coating on compound and system properties for glass lens moulding. Production Engineering, 2012,6:311-318.
DOI URL |
[84] | BOBZIN K, BAGCIVAN N, BRÖGELMANN T , et al. Development and qualification of a MSIP PVD iridium coating for precision glass moulding. Materials Sciences and Application, 2013,44(8):673-678. |
[85] |
SAKSENA A, CHIEN Y C, CHANG K K , et al. Metastable phase formation of Pt-X (X= Ir, Au) thin flms. Scientific Reports, 2018,8(1):10198.
DOI URL PMID |
[86] |
YAMABE-MITARAI Y, AOYAGI T, ABE T , et al. An investigation of phase separation in the Ir-Pt binary system. Journal of Alloys and Compounds, 2009,484:327-334.
DOI URL |
[87] |
XU X N, REN Y P, LI C F , et al. Thermodynamic assessment of Au-Pt system. Transactions of Nonferrous Metals Society of China, 2012,22:1432-1436.
DOI URL |
[1] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
[2] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[3] | CHEN Qiang, BAI Shuxin, YE Yicong. Highly Thermal Conductive Silicon Carbide Ceramics Matrix Composites for Thermal Management: a Review [J]. Journal of Inorganic Materials, 2023, 38(6): 634-646. |
[4] | LIN Junliang, WANG Zhanjie. Research Progress on Ferroelectric Superlattices [J]. Journal of Inorganic Materials, 2023, 38(6): 606-618. |
[5] | NIU Jiaxue, SUN Si, LIU Pengfei, ZHANG Xiaodong, MU Xiaoyu. Copper-based Nanozymes: Properties and Applications in Biomedicine [J]. Journal of Inorganic Materials, 2023, 38(5): 489-502. |
[6] | YUAN Jingkun, XIONG Shufeng, CHEN Zhangwei. Research Trends and Challenges of Additive Manufacturing of Polymer-derived Ceramics [J]. Journal of Inorganic Materials, 2023, 38(5): 477-488. |
[7] | DU Jianyu, GE Chen. Recent Progress in Optoelectronic Artificial Synapse Devices [J]. Journal of Inorganic Materials, 2023, 38(4): 378-386. |
[8] | YANG Yang, CUI Hangyuan, ZHU Ying, WAN Changjin, WAN Qing. Research Progress of Flexible Neuromorphic Transistors [J]. Journal of Inorganic Materials, 2023, 38(4): 367-377. |
[9] | YOU Junqi, LI Ce, YANG Dongliang, SUN Linfeng. Double Dielectric Layer Metal-oxide Memristor: Design and Applications [J]. Journal of Inorganic Materials, 2023, 38(4): 387-398. |
[10] | QI Zhanguo, LIU Lei, WANG Shouzhi, WANG Guogong, YU Jiaoxian, WANG Zhongxin, DUAN Xiulan, XU Xiangang, ZHANG Lei. Progress in GaN Single Crystals: HVPE Growth and Doping [J]. Journal of Inorganic Materials, 2023, 38(3): 243-255. |
[11] | ZHANG Chaoyi, TANG Huili, LI Xianke, WANG Qingguo, LUO Ping, WU Feng, ZHANG Chenbo, XUE Yanyan, XU Jun, HAN Jianfeng, LU Zhanwen. Research Progress of ScAlMgO4 Crystal: a Novel GaN and ZnO Substrate [J]. Journal of Inorganic Materials, 2023, 38(3): 228-242. |
[12] | CHEN Kunfeng, HU Qianyu, LIU Feng, XUE Dongfeng. Multi-scale Crystallization Materials: Advances in in-situ Characterization Techniques and Computational Simulations [J]. Journal of Inorganic Materials, 2023, 38(3): 256-269. |
[13] | LIN Siqi, LI Airan, FU Chenguang, LI Rongbing, JIN Min. Crystal Growth and Thermoelectric Properties of Zintl Phase Mg3X2 (X=Sb, Bi) Based Materials: a Review [J]. Journal of Inorganic Materials, 2023, 38(3): 270-279. |
[14] | ZHANG Aimei, ZHU Jiajia, FANG Tiancheng, PAN Xixi. Effects of Al3+ Doping on the Structure and Electrical Transport Property of La0.8Sr0.2Mn1-xAlxO3 [J]. Journal of Inorganic Materials, 2023, 38(2): 148-154. |
[15] | XIE Bing, CAI Jinxia, WANG Tongtong, LIU Zhiyong, JIANG Shenglin, ZHANG Haibo. Research Progress of Polymer-based Multilayer Composite Dielectrics with High Energy Storage Density [J]. Journal of Inorganic Materials, 2023, 38(2): 137-147. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||