Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (10): 1128-1133.DOI: 10.15541/jim20190005
• RESEARCH LETTERS • Previous Articles
CHENG Guo-Feng(),RUAN Yin-Jie,SUN Yue,YIN Han-Di
Received:
2019-01-03
Published:
2019-09-23
Online:
2019-05-29
Supported by:
CLC Number:
CHENG Guo-Feng, RUAN Yin-Jie, SUN Yue, YIN Han-Di. Thermodynamic Stability and Thermal Expansion of Pure-phase BiFeO3[J]. Journal of Inorganic Materials, 2019, 34(10): 1128-1133.
Fig. 3 Observed (black solid lines), calculated (red solid lines) and difference (blue solid lines) XRD patterns of BFO powder before and after heating process
T/℃ | Lattice parameter | ||
---|---|---|---|
a/nm | c/nm | V/nm3 | |
25 | 0.5579253(74) | 1.387086(20) | 0.373926(11) |
100 | 0.5582803(68) | 1.388433(20) | 0.374766(11) |
200 | 0.5588673(71) | 1.390434(20) | 0.376096(11) |
300 | 0.5594514(79) | 1.392472(23) | 0.377435(12) |
400 | 0.5601610(83) | 1.394704(24) | 0.378999(13) |
500 | 0.5608080(19) | 1.396426(49) | 0.380344(29) |
600 | 0.5614370(21) | 1.397813(54) | 0.381577(32) |
700 | 0.5621000(24) | 1.398977(61) | 0.382797(36) |
800 | 0.5628300(22) | 1.399778(58) | 0.384011(34) |
T/℃ | Lattice parameter | ||
---|---|---|---|
a/nm | c/nm | V/nm3 | |
25 | 0.5579253(74) | 1.387086(20) | 0.373926(11) |
100 | 0.5582803(68) | 1.388433(20) | 0.374766(11) |
200 | 0.5588673(71) | 1.390434(20) | 0.376096(11) |
300 | 0.5594514(79) | 1.392472(23) | 0.377435(12) |
400 | 0.5601610(83) | 1.394704(24) | 0.378999(13) |
500 | 0.5608080(19) | 1.396426(49) | 0.380344(29) |
600 | 0.5614370(21) | 1.397813(54) | 0.381577(32) |
700 | 0.5621000(24) | 1.398977(61) | 0.382797(36) |
800 | 0.5628300(22) | 1.399778(58) | 0.384011(34) |
T/℃ | Atom position | Rwp/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Bi | Fe | O | ||||||||
x | y | z | x | y | z | x | y | z | ||
25 | 0 | 0 | 0 | 0 | 0 | 0.22124(27) | 0.46400(22) | 0.01990(16) | 0.95452(57) | 5.87 |
100 | 0 | 0 | 0 | 0 | 0 | 0.22129(30) | 0.46160(21) | 0.02330(17) | 0.95583(57) | 5.98 |
200 | 0 | 0 | 0 | 0 | 0 | 0.22227(29) | 0.44790(19) | 0.02350(18) | 0.95600(65) | 6.05 |
300 | 0 | 0 | 0 | 0 | 0 | 0.22039(28) | 0.45230(18) | 0.03560(17) | 0.95718(64) | 5.96 |
400 | 0 | 0 | 0 | 0 | 0 | 0.22192(29) | 0.43660(18) | 0.02550(18) | 0.95829(68) | 5.82 |
500 | 0 | 0 | 0 | 0 | 0 | 0.22325(32) | 0.42590(23) | 0.01370(23) | 0.95869(84) | 5.88 |
600 | 0 | 0 | 0 | 0 | 0 | 0.22484(36) | 0.41590(23) | 0.01790(24) | 0.96229(85) | 6.07 |
700 | 0 | 0 | 0 | 0 | 0 | 0.22400(38) | 0.43700(19) | 0.00720(18) | 0.95701(67) | 5.6 |
800 | 0 | 0 | 0 | 0 | 0 | 0.22376(49) | 0.43290(20) | 0.01880(21) | 0.95832(77) | 6.02 |
T/℃ | Atom position | Rwp/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Bi | Fe | O | ||||||||
x | y | z | x | y | z | x | y | z | ||
25 | 0 | 0 | 0 | 0 | 0 | 0.22124(27) | 0.46400(22) | 0.01990(16) | 0.95452(57) | 5.87 |
100 | 0 | 0 | 0 | 0 | 0 | 0.22129(30) | 0.46160(21) | 0.02330(17) | 0.95583(57) | 5.98 |
200 | 0 | 0 | 0 | 0 | 0 | 0.22227(29) | 0.44790(19) | 0.02350(18) | 0.95600(65) | 6.05 |
300 | 0 | 0 | 0 | 0 | 0 | 0.22039(28) | 0.45230(18) | 0.03560(17) | 0.95718(64) | 5.96 |
400 | 0 | 0 | 0 | 0 | 0 | 0.22192(29) | 0.43660(18) | 0.02550(18) | 0.95829(68) | 5.82 |
500 | 0 | 0 | 0 | 0 | 0 | 0.22325(32) | 0.42590(23) | 0.01370(23) | 0.95869(84) | 5.88 |
600 | 0 | 0 | 0 | 0 | 0 | 0.22484(36) | 0.41590(23) | 0.01790(24) | 0.96229(85) | 6.07 |
700 | 0 | 0 | 0 | 0 | 0 | 0.22400(38) | 0.43700(19) | 0.00720(18) | 0.95701(67) | 5.6 |
800 | 0 | 0 | 0 | 0 | 0 | 0.22376(49) | 0.43290(20) | 0.01880(21) | 0.95832(77) | 6.02 |
Fig. 4 Lattice parameters and cell volume of BFO in the heating process (temperature regime 25-800 ℃, (a)) and cooling process (temperature regime 700-25 ℃, (b))
Sample | Temperature/ ℃ | αTa/ (×10-6,℃-1) | αTc/ (×10-6,℃-1) | αTV/ (×10-6,℃-1) |
---|---|---|---|---|
BiFeO3 | 25-800 | 11.34 | 11.81 | 34.80 |
Sample | Temperature/ ℃ | αTa/ (×10-6,℃-1) | αTc/ (×10-6,℃-1) | αTV/ (×10-6,℃-1) |
---|---|---|---|---|
BiFeO3 | 25-800 | 11.34 | 11.81 | 34.80 |
[1] | CARVALHO T T, TAVARES P B . Synthesis and thermodynamic stability of multiferroic BiFeO3. Mater. Lett., 2008,62(24):3984-3986. |
[2] | BERNARDO M S, JARDIEL T, PEITEADO M , et al. Reaction pathways in the solid state synjournal of multiferroic BiFeO3.[J]. Eur. Ceram. Soc., 2011,31(16):3047-3053. |
[3] | RANGI M, SANGHI S, JANGRA S , et al. Crystal structure transformation and improved dielectric and magnetic properties of La-substituted BiFeO3 multiferroics. Ceram. Int., 2017,43(15):12095-12101. |
[4] | MICHEL C, MOREAU J M, ACHENBACH G D , et al. The atomic structure of BiFeO3. Solid State Com., 1969,7(9):701-704. |
[5] | CHATURVEDI S, BAG R, SATHE V , et al. Holmium induced enhanced functionality at room temperature and structural phase transition at high temperature in bismuth ferrite nanoparticles. J. Mater. Chem. C, 2016,4(4):780-792. |
[6] | WEI J, HAUMONT R, JARRIER R , et al. Nonmagnetic Fe-site doping of BiFeO3 multiferroic ceramics. Appl. Phys. Lett., 2010,96(10):102509. |
[7] | GAUTAM A, RANGRA V S . Effect of Ba ions substitution on multiferroic properties of BiFeO3 perovskite. Cryst. Res. Technol., 2010,45(9):953-956. |
[8] | NALWA K S, GARG A, UPADHYAYA A . Effect of samarium doping on the properties of solid-state synthesized multiferroic bismuth ferrite. Mater. Lett., 2008,62(6/7):878-881. |
[9] | WANG Y P, ZHOU L, ZHANG M F , et al. Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering. Appl. Phys. Lett., 2004,84(10):1731-1733. |
[10] | ZHANG S T, LU M H, WU D , et al. Larger polarization and weak ferromagnetism in quenched BiFeO3 ceramics with a distorted rhombohedral crystal structure. App. Phy. Lett., 2005,87(26):262907. |
[11] | SELBACH S M, TYBELL T, EINARSRUD M A , et al. Size-dependent properties of multiferroic BiFeO3 nanoparticles. Chem. Mater., 2007,19:6478-6484. |
[12] | ZHANG L, CAO X F, MA Y L , et al. Polymer-directed synjournal and magnetic property of nanoparticles-assembled BiFeO3 microrods.[J]. Solid. State. Chem., 2010,183(8):1761-1766. |
[13] | KUMAR M M, PALKAR V R, SRINIVAS K , et al. Ferroelectricity in a pure BiFeO3 ceramic. Appl. Phys. Lett., 2000,76(19):2764-2766. |
[14] | SELBACH S M, EINARSRUD M A, GRANDE T . On the thermodynamic stability of BiFeO3. Chem. Mater., 2009,21(1):169-173. |
[15] | CHENG G F, RUAN Y J, LIU W , et al. Effect of temperature variation on the phase transformation in the reaction sintering of BiFeO3 ceramics. Mater. Lett., 2015,143:330-332. |
[16] | CHEN J, FAN L, REN Y , et al, Unusual transformation from strong negative to positive thermal expansion in PbTiO3-BiFeO3 perovskite. Phys. Rev. Lett., 2013,110:115901. |
[17] | BHATTACHARJEE S, TAJI K, MORIYOSHI C , et al. Temperature- induced isostructural phase transition, associated large negative volume expansion, and the existence of a critical point in the phase diagram of the multiferroic (1-x)BiFeO3-xPbTiO3 solid solution system. Phys. Rev. B, 2011,84(10):104116. |
[18] | KLYNDYUK A I, CHIZHOVA E A . Structure, thermal expansion, and electrical properties of BiFeO3-NdMnO3, solid solutions. Inorg. Mater., 2015,51(3):272-277. |
[19] | CHEN J, XING X R, LIU G R . Structure and negative thermal expansion in the PbTiO3-BiFeO3 system. Appl. Phys. Lett., 2006,89:101914. |
[20] | PALAI R, KATIYAR R S, SCHMID H , et al. β, phase and γ-β, metal-insulator transition in multiferroic BiFeO3. Phys. Rev. B, 2008,77(1):014110. |
[21] | GUSEV A I, SADOVNIKOV S I, CHUKIN A V , et al. Thermal expansion of nanocrystalline and coarse-crystalline silver sulfide Ag2S. Phys. Solid State, 2016,58(2):251-257. |
[22] | KESKAR M, KRISHNAN K, DAHALE N D . Thermal expansion studies on Th(MoO4)2, Na2Th(MoO4)3, and Na4Th(MoO4)4.[J]. Alloys Compounds, 2008,458(1):104-108. |
[23] | HALVARSSON M, LANGER V ,VUORINEN S. Determination of the thermal expansion of κ-Al2O3, by high temperature XRD. Surf. Coat. Tech., 1995, 76- 77(5):358-362. |
[24] | KUBEL F, SCHMID H . Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3. Acta Cryst., 1990,B46:698-702. |
[25] | FIZA M, HASSNAIN J G, ISMAT S S . Peculiar magnetism in Eu substituted BiFeO3 and its correlation with local structure. J. Phys.:Condens. Matter, 2018,30:435802. |
[26] | PANDEY R, PANDA C, KUMAR P , et al. Phase diagram of Sm and Mn co-doped bismuth ferrite based on crystal structure and magnetic properties.[J]. Sol-Gel Sci. Technol., 2018,85:166-177. |
[1] | CHEN Mingyue, YAN Zhichao, CHEN Jing, LI Minjuan, LIU Zhiyong, CAI Chuanbing. YBa2Cu3O7-δ Thin Film: Preparation by BaCl2/BaF2-MOD Method and Superconducting Property [J]. Journal of Inorganic Materials, 2023, 38(2): 199-204. |
[2] | JIN Min, BAI Xudong, ZHANG Rulin, ZHOU Lina, LI Rongbin. Metal Sulfide Ag2S: Fabrication via Zone Melting Method and Its Thermoelectric Property [J]. Journal of Inorganic Materials, 2022, 37(1): 101-106. |
[3] | FAN Wenqi, SONG Xuemei, HUANG Yiling, CHANG Chengkang. Structure Change and Phase Transition Distribution of YSZ Coating Caused by CMAS Corrosion [J]. Journal of Inorganic Materials, 2021, 36(10): 1059-1066. |
[4] | ZHANG Yaping,LEI Yuxuan,DING Wenming,YU Lianqing,ZHU Shuaifei. Preparation and Photoelectrochemical Property of the Dual-ferroelectric Composited Material [J]. Journal of Inorganic Materials, 2020, 35(9): 987-992. |
[5] | YU Ying, DU Hongliang, YANG Zetian, JIN Li, QU Shaobo. Electrocaloric Effect of Lead-free Bulk Ceramics: Current Status and Challenges [J]. Journal of Inorganic Materials, 2020, 35(6): 633-646. |
[6] | XU Dong, ZHU Yufang, ZHENG Yuanyi, LUO Yu, CHEN Hangrong. Injectable Magnetic Liquid-solid Phase Transition Material for MR Imaging and Low-temperature Magnetocaloric Therapy of Osteosarcoma [J]. Journal of Inorganic Materials, 2020, 35(11): 1277-1282. |
[7] | HAN Liu-Yang, GUO Shao-Bo, YAN Shi-Guang, RÉMIENS Denis, WANG Gen-Shui, DONG Xian-Lin. Electrocaloric Effect in Pb0.3CaxSr0.7-xTiO3 Ceramics Near Room Temperature [J]. Journal of Inorganic Materials, 2019, 34(9): 1011-1014. |
[8] | ZHANG Xiao-Chen, WANG Xue-Mei, WANG Chun-Lei. Influences of Sintering Methods on Microstructure and Physical Property of (K,Na,Li)(Nb,Sb,Ta)O3 Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2019, 34(7): 721-726. |
[9] | CHEN Hong-Yi, SHI Xun, CHEN Li-Dong, QIU Peng-Fei. Measurement and Analysis of Cu2S Thermal Diffusivity during Phase Transition [J]. Journal of Inorganic Materials, 2019, 34(10): 1041-1046. |
[10] | CHENG Guo-Feng, RUAN Yin-Jie, SUN Yue, YIN Han-Di, XIE Qi-Yun. Stoichiometric Ratio on Phase Transformation in Reaction Sintering of BiFeO3 Ceramics Study: a High Temperature X-ray Diffraction Study [J]. Journal of Inorganic Materials, 2019, 34(10): 1035-1040. |
[11] | SONG Jian-Min, DAI Xiu-Hong, LIANG Jie-Tong, ZHAO Lei, ZHOU Yang, GE Da-Yong, MENG Xu-Dong, LIU Bao-Ting. Resistive Switching Effect and Dielectric Property of Epitaxial BiFeO3 Thin Films by Off-axis Magnetron Sputtering [J]. Journal of Inorganic Materials, 2018, 33(9): 1017-1021. |
[12] | MA Jian, ZHANG Bo-Ping, CHEN Jian-Yin. Excess Bi and Cooling Method on Phase Structure and Electrical Properties of BiFeO3-BaTiO3 Lead-free Ceramics [J]. Journal of Inorganic Materials, 2017, 32(10): 1035-1041. |
[13] | SUN Shu-Miao, YU Yang, MI Le, YU Yun, CAO Yun-Zhen, SONG Li-Xin. Effect of Sintering Temperature on Structure and Electric Performance of La0.67Ca0.33-xSrxMnO3 Ceramic [J]. Journal of Inorganic Materials, 2016, 31(9): 943-947. |
[14] | ZHAO Xiang-Yang, MAN Pei-Wen, XIE Tao, WU An-Hua, SU Liang-Bi. Crystal Growth and Characterization of the Rare-earth Orthoferrite Sm0.8Tb0.2FeO3 Single Crystal [J]. Journal of Inorganic Materials, 2016, 31(9): 1004-1008. |
[15] | ZHANG Sa, LIU Ying, LIU Yi-Xuan, CHENG Xuan, ZHANG Ying. Phase Transitions in PLZT Ceramics Observed by In-situ Raman Spectroscopy [J]. Journal of Inorganic Materials, 2014, 29(4): 399-404. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||