Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (9): 991-996.DOI: 10.15541/jim20180563
Special Issue: 优秀作者论文集锦; 2019~2020年度优秀作者作品欣赏:功能材料
• RESEARCH PAPER • Previous Articles Next Articles
ZHANG Zhi-Ming,FANG Xiao-Sheng()
Received:
2018-11-30
Revised:
2018-01-05
Published:
2019-09-20
Online:
2019-05-29
Supported by:
CLC Number:
ZHANG Zhi-Ming,FANG Xiao-Sheng. Preparation and Photodetection Property of ZnO Nanorods/ZnCo2O4 Nanoplates Heterojunction[J]. Journal of Inorganic Materials, 2019, 34(9): 991-996.
Fig. 1 AFM (a) and SEM (b) characterization of ZnCo2O4 nanoplates, optical images of ZnCo2O4 nanoplates thin film before (c) and after (d) ultrasonic treatment
Fig. 2 SEM images of ZnO grown with seed layers of different thicknesses (a-b) No seed layer; (c-d) 5 nm seed layer; (e-f) 15 nm seed layer; (g-h) 50 nm seed layer
Fig. 3 Diagram of ZnO nanorods/ZnCo2O4 nanoplates heterojunction device (a), I-V characteristics of ZnO nanorod arrays (b), I-V characteristics (c) and zoomed in graph (0-1 V) (d) of ZnO nanorods/ZnCo2O4 nanoplates heterojunction
Fig. 4 Photodetection properties of ZnO nanorods/ZnCo2O4 nanoplates heterojunction device (a) Band diagram under forward and reverse bias; (b) Photoelectric response to 350 nm (0.753 mW?·cm-2) UV light; (c) Photoelectric response to illumination of different wavelength under reverse bias; (d) Responsivity
[1] | WANG Z L . ZnO nanowire and nanobelt platform for nano- technology. Mat. Sci. Eng. R, 2009,64(3):33-71. |
[2] | MANEKKATHODI A, LU M Y, WANG C W , et al. Direct growth of aligned zinc oxide nanorods on paper substrates for low-cost flexible electronics. Adv. Mater., 2010,22(22):4059-4063. |
[3] | VAYSSIERES L . Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater., 2003,15(5):464-466. |
[4] | LIANG J R, ZHANG Y, YANG R ,et al. Room-temperature NH3 gas sensing property of VO2(B)/ZnO hierarchical heterogeneous composite with nanorod structure. J. Inorg. Mater., 2018,33(12):1323-1329. |
[5] | NING Y, ZHANG Z M, TENG F , et al. Novel transparent and self-powered UV photodetector based on crossed ZnO nanofiber array homojunction. Small, 2018,14(13):1703754. |
[6] | HU K, TENG F, ZHENG L X , et al. Binary response Se/ZnO p-n heterojunction UV photodetector with high on/off ratio and fast speed. Laser Photonics Rev., 2017,11(1):1600257. |
[7] | TSAI D S, LIN C A, LIEN W C , et al. Ultra-high-responsivity broadband detection of Si metal-semiconductor-metal Schottky photodetectors improved by ZnO nanorod arrays. ACS Nano, 2011,5(10):7748-7753. |
[8] | YIN Z Y, WANG Z, DU Y P , et al. Full solution-processed synthesis of all metal oxide-based tree-like heterostructures on fluorine- doped tin oxide for water splitting. Adv. Mater., 2012,24(39):5374-5378. |
[9] | NIE B, HU J G, LUO L B , et al. Monolayer graphene film on ZnO nanorod array for high-performance Schottky junction ultraviolet photodetectors. Small, 2013,9(17):2872-2879. |
[10] | HATCH S M, BRISCOE J, DUNN S . A self-powered ZnO nanorod/CuSCN UV photodetector exhibiting rapid response. Adv. Mater., 2013,25(6):867-871. |
[11] | LI S B, XU J P, SHI S B , et al. UV photoresponse properties of ZnO nanorods arrays deposited with CuSCN by SILAR method. Chem. Phys. Lett., 2015,620:50-55. |
[12] | BIE Y Q, LIAO Z M, ZHANG H Z , et al. Self-powered, ultrafast, visible-blind UV detection and optical logical operation based on ZnO/GaN nanoscale p-n junctions. Adv. Mater., 2011,23(5):649-653. |
[13] | LEE T I, LEE S H, KIM Y D , et al. Playing with dimensions: rational design for heteroepitaxial p-n junctions. Nano Lett., 2011,12(1):68-76. |
[14] | FORTICAUX A, HACIALIOGLU S, DEGRAVE J P ,et al. Three-dimensional mesoscale heterostructures of ZnO nanowire arrays epitaxially grown on CuGaO2 nanoplates as individual diodes. ACS Nano, 2013,7(9):8224-8232. |
[15] | DEKKERS M, RIJNDERS G, BLANK D H . ZnIr2O4, a p-type transparent oxide semiconductor in the class of spinel zinc-d 6- transition metal oxide. Appl. Phys. Lett., 2007,90(2):021903. |
[16] | KIM S, CIANFRONE J A, SADIK P , et al. Room temperature deposited oxide p-n junction using p-type zinc-cobalt-oxide. J. Appl. Phys., 2010,107(10):103538. |
[17] | KIM H J, SONG I C, SIM J H , et al. Structural and transport properties of cubic spinel ZnCo2O4 thin films grown by reactive magnetron sputtering. Solid State Commun., 2004,129(10):627-630. |
[18] | QIU Y C, YANG S H, DENG H , et al. A novel nanostructured spinel ZnCo2O4 electrode material: morphology conserved transformation from a hexagonal shaped nanodisk precursor and application in lithium ion batteries. J. Mater. Chem., 2010,20(21):4439-4444. |
[19] | SHARMA Y, SHARMA N, SUBBA RAO G V, , et al. Nanophase ZnCo2O4 as a high performance anode material for Li-ion batteries. Adv. Funct. Mater., 2007,17(15):2855-2861. |
[20] | WEI X H, CHEN D H, TANG W J . Preparation and characterization of the spinel oxide ZnCo2O4 obtained by Sol-Gel method. Mater. Chem. Phys., 2007,103(1):54-58. |
[21] | HU L F, MA R Z, OZAWA T C , et al. Oriented films of layered rare-earth hydroxide crystallites self-assembled at the hexane/water interface. Chem. Commun., 2008,40(40):4897-4899. |
[22] | HU L F, MA R Z, OZAWA T C ,et al. Oriented monolayer film of Gd2O3:0.05Eu crystallites: quasi-topotactic transformation of the hydroxide film and drastic enhancement of photoluminescence properties. Angew. Chem. Int. Ed., 2009,48(21):3846-3849. |
[23] | BAE J, SONG M K, PARK Y J , et al. Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. Angew. Chem. Int. Ed., 2011,50(7):1683-1687. |
[24] | XU S, ADIGA N, BA S , et al. Optimizing and improving the growth quality of ZnO nanowire arrays guided by statistical design of experiments. ACS Nano, 2009,3(7):1803-1812. |
[25] | LADANOV M, ALGARIN-AMARIS P, VILLALBA P ,et al. Effects of the physical properties of atomic layer deposition grown seeding layers on the preparation of ZnO nanowires. J. Phys. Chem. Solids, 2013,74(11):1578-1588. |
[26] | SONG J, LIM S . Effect of seed layer on the growth of ZnO nanorods. J. Phys. Chem. C, 2007,111(2):596-600. |
[27] | XU S, WANG Z L . One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res., 2011,4(11):1013-1098. |
[28] | BIELINSKI A R, KAZYAK E, SCHLEPÜTZ C M , et al. Hierarchical ZnO nanowire growth with tunable orientations on versatile substrates using atomic layer deposition seeding. Chem. Mater., 2015,27(13):4799-4807. |
[29] | XU X J, CHEN J X, CAI S , et al. A real-time wearable UV-radiation monitor based on a high-performance p-CuZnS/n-TiO2 photodetector. Adv. Mater., 2018,30(43):1803165. |
[30] | ZHAO B, WANG F, CHEN H Y , et al. An ultrahigh responsivity (9.7 mA·W-1) self-powered solar-blind photodetector based on individual ZnO-Ga2O3 heterostructures. Adv. Funct. Mater., 2017,27(17):1700264. |
[1] | TUERHONG Munire, ZHAO Honggang, MA Yuhua, QI Xianhui, LI Yuchen, YAN Chenxiang, LI Jiawen, CHEN Ping. Construction and Photocatalytic Activity of Monoclinic Tungsten Oxide/Red Phosphorus Step-scheme Heterojunction [J]. Journal of Inorganic Materials, 2023, 38(6): 701-707. |
[2] | WU Lin, HU Minglei, WANG Liping, HUANG Shaomeng, ZHOU Xiangyuan. Preparation of TiHAP@g-C3N4 Heterojunction and Photocatalytic Degradation of Methyl Orange [J]. Journal of Inorganic Materials, 2023, 38(5): 503-510. |
[3] | WANG Ruyi, XU Guoliang, YANG Lei, DENG Chonghai, CHU Delin, ZHANG Miao, SUN Zhaoqi. p-n Heterostructured BiVO4/g-C3N4 Photoanode: Construction and Its Photoelectrochemical Water Splitting Performance [J]. Journal of Inorganic Materials, 2023, 38(1): 87-96. |
[4] | MA Xinquan, LI Xibao, CHEN Zhi, FENG Zhijun, HUANG Juntong. BiOBr/ZnMoO4 Step-scheme Heterojunction: Construction and Photocatalytic Degradation Properties [J]. Journal of Inorganic Materials, 2023, 38(1): 62-70. |
[5] | CHEN Shikun, WANG Chuchu, CHEN Ye, LI Li, PAN Lu, WEN Guilin. Magnetic Ag2S/Ag/CoFe1.95Sm0.05O4 Z-scheme Heterojunction: Preparation and Its Photocatalytic Degradation Property [J]. Journal of Inorganic Materials, 2022, 37(12): 1329-1336. |
[6] | LEI Weiyan, WANG Yue, WU Shiran, SHI Dongxin, SHEN Yi, LI Fengfeng. 2D Nanomaterials from Group VA Single-element: Research Progress in Biomedical Fields [J]. Journal of Inorganic Materials, 2022, 37(11): 1181-1191. |
[7] | LIU Peng, WU Shimiao, WU Yunfeng, ZHANG Ning. Synthesis of Zn0.4(CuGa)0.3Ga2S4/CdS Photocatalyst for CO2 Reduction [J]. Journal of Inorganic Materials, 2022, 37(1): 15-21. |
[8] | LI Huaxin, CHEN Junyong, XIAO Zhou, YUE Xian, YU Xianbo, XIANG Junhui. Research Progress of Biomimetic Self-assembly of Nanomaterials in Morphology and Performance Control [J]. Journal of Inorganic Materials, 2021, 36(7): 695-710. |
[9] | XIANG Hui, QUAN Hui, HU Yiyuan, ZHAO Weiqian, XU Bo, YIN Jiang. Piezoelectricity of Graphene-like Monolayer ZnO and GaN [J]. Journal of Inorganic Materials, 2021, 36(5): 492-496. |
[10] | ZHANG Qingming, ZHU Min, ZHOU Xiaoxia. CuO/ZnO Composite Electrocatalyst: Preparation and Reduction of CO2 to Syngas [J]. Journal of Inorganic Materials, 2021, 36(11): 1145-1153. |
[11] | CHENG Xiaokun, ZHANG Yue, Lü Haijun, LIU Xinying, HOU Senlin, CHEN Aibing. Porous Carbon Nanomaterials Based Tumor Targeting Drug Delivery System: a Review [J]. Journal of Inorganic Materials, 2021, 36(1): 9-24. |
[12] | ZHANG Dongshuo,CAI Hao,GAO Kaiyin,MA Zichuan. Preparation and Visible-light Photocatalytic Degradation on Metronidazole of Zn2SiO4-ZnO-biochar Composites [J]. Journal of Inorganic Materials, 2020, 35(8): 923-930. |
[13] | XU Shichao,ZHU Tianzhe,QIAO Yang,BAI Xuejian,TANG Nan,ZHENG Chunming. Fabrication of Z-scheme BiVO4/GO/g-C3N4 Photocatalyst with Efficient Visble-light Photocatalytic Performance [J]. Journal of Inorganic Materials, 2020, 35(7): 839-846. |
[14] | ZHU Zeyang,WEI Jishi,HUANG Jianhang,DONG Xiangyang,ZHANG Peng,XIONG Huanming. Preparation of ZnO Nanorods with Lattice Vacancies and Their Application in Ni-Zn Battery [J]. Journal of Inorganic Materials, 2020, 35(4): 423-430. |
[15] | ZHANG Wei,GAO Peng,HOU Chengyi,LI Yaogang,ZHANG Qinghong,WANG Hongzhi. Chip Sensor for pH and Temperature Monitoring Based on ZnO Composite [J]. Journal of Inorganic Materials, 2020, 35(4): 416-422. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||