Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (10): 1109-1114.DOI: 10.15541/jim20190067
Previous Articles Next Articles
XIA Tian1,2,MENG Xie1,LUO Ting1,ZHAN Zhong-Liang1()
Received:
2019-02-13
Published:
2019-09-23
Online:
2019-05-29
Supported by:
CLC Number:
XIA Tian, MENG Xie, LUO Ting, ZHAN Zhong-Liang. Synthesis and Evaluation of Ca-doped Sr2Fe1.5Mo0.5O6-δ as Symmetrical Electrodes for High Performance Solid Oxide Fuel Cells[J]. Journal of Inorganic Materials, 2019, 34(10): 1109-1114.
Fig. 1 XRD patterns of Sr2-xCaxFe1.5Mo0.5O6-δ powders synthetized in air (a) and reduced in humidified hydrogen (b) at 800 ℃ for 4 h; (c) Magnified view of the diffraction peak at 67.5°
Fig. 4 (a) EIS plots of the Sr2-xCaxFe1.5Mo0.5O6-δ symmetrical cells measured in humidified hydrogen at 800 ℃, and (b) Arrhenius plots of the anode polarization resistances over the temperature range of 650-800 ℃
Fig. 5 (a) EIS plots of the Sr2-xCaxFe1.5Mo0.5O6-δ symmetrical cells measured in air at 800 ℃, and (b) Arrhenius plots of the cathode polarization resistances over the temperature range of 650-800 ℃
Fig. 6 (a) Voltage and power density versus current density for a symmetrical fuel cell with Sr2-xCaxFe1.5Mo0.5O6-δ(x=0.6) electrode measured in humidified hydrogen fuel and dry air over the temperature range of 650-800 ℃; (b) Nyquist plots of impedance data measured at open circuits; (c) Maximum power densities of the symmetrical SCFMO electrode cells at different Ca2+ substitutions over the temperature range of 650-800 ℃
[1] | ORMEROD R M . Solid oxide fuel cells. Chemical Society Reviews, 2003,32(1):17-28. |
[2] | MINH N Q . Solid oxide fuel cell technology—features and applications. Solid State Ionics, 2004,174(1):271-277. |
[3] | IRVINE J T S, CONNOR P . SOFC Facts and Figures: Past Present and Future Perspectives for SOFC Technologies. London: Springer London, 2013. |
[4] | STEELE B C H, HEINZEL A . Materials for fuel-cell technologies. Nature, 2001,414:345-352. |
[5] | CARLOS RUIZ-MORALES J, MARRERO-LOPEZ D, CANALES-VAZQUEZ J , et al. Symmetric and reversible solid oxide fuel cells.RSC Adv., 2011,1(8):1403-1414. |
[6] | SU C, WANG W, LIU M , et al. Progress and prospects in symmetrical solid oxide fuel cells with two identical electrodes.Advanced Energy Materials, 2015,5(14):1500188. |
[7] | DOS SANTOS-GÓMEZ L, PORRAS-VÁZQUEZ J M, LOSILLA E R , et al. Ti-doped SrFeO3 nanostructured electrodes for symmetric solid oxide fuel cells.RSC Adv., 2015,5(130):107889-107895. |
[8] | BIAN L, DUAN C, WANG L , et al. Ce-doped La0.7Sr0.3Fe0.9Ni0.1O3-δ as symmetrical electrodes for high performance direct hydrocarbon solid oxide fuel cells.Journal of Materials Chemistry A, 2017,5(29):15253-15259. |
[9] | LIN B, WANG S, LIU X , et al. Simple solid oxide fuel cells.Journal of Alloys and Compounds, 2010,490(1):214-222. |
[10] | BASTIDAS D M, TAO S ,IRVINE J T S. A symmetrical solid oxide fuel cell demonstrating redox stable perovskite electrodes. J. Mater. Chem., 2006,16(17):1603-1605. |
[11] | CHEN M, PAULSON S, THANGADURAI V , et al. Sr-rich chromium ferrites as symmetrical solid oxide fuel cell electrodes.Journal of Power Sources, 2013,236:68-79. |
[12] | CANALES-VÁZQUEZ J, RUIZ-MORALES J C, MARRERO-LÓPEZ D , et al. Fe-substituted (La,Sr)TiO3 as potential electrodes for symmetrical fuel cells (SFCs).Journal of Power Sources, 2007,171(2):552-557. |
[13] | MARTíNEZ-CORONADO R, AGUADERO A, PÉREZ-COLL D , et al. Characterization of La0.5Sr0.5Co0.5Ti0.5O3-δ as symmetrical electrode material for intermediate-temperature solid-oxide fuel cells.International Journal of Hydrogen Energy, 2012,37(23):18310-18318. |
[14] | FERNANDEZ-ROPERO A J, PORRAS-VAZQUEZ J M, CABEZA A , et al. High valence transition metal doped strontium ferrites for electrode materials in symmetrical SOFCs.J. Power Sources, 2014,249:405-413. |
[15] | LIU Q, DONG X, XIAO G , et al. A novel electrode material for symmetrical SOFCs.Advanced Materials, 2010,22(48):5478-5482. |
[16] | MENG X, LIU X J, DA H , et al. Symmetrical solid oxide fuel cells with impregnated SrFe0.75Mo0.25O3-δ electrodes.J. Power Sources, 2014,252:58-63. |
[17] | GAO J, MENG X, LUO T , et al. Symmetrical solid oxide fuel cells fabricated by phase inversion tape casting with impregnated SrFe0.75Mo0.25O3-δ(SFMO) electrodes.International Journal of Hydrogen Energy, 2017,42(29):18499-18503. |
[18] | LIU F, ZHANG L, HUANG G , et al. High performance ferrite-based anode La0.5Sr0.5Fe0.9Mo0.1O3-δ for intermediate-temperature solid oxide fuel cell.Electrochimica Acta, 2017,255:118-126. |
[19] | QIAO J, CHEN W, WANG W , et al. The Ca element effect on the enhancement performance of Sr2Fe1.5Mo0.5O6-δ perovskite as cathode for intermediate-temperature solid oxide fuel cells.J. Power Sources, 2016. 331:400-407. |
[20] | MENG X, HAN D, WU H , et al. Characterization of SrFe0.75Mo0.25O3-δ-La0.9Sr0.1Ga0.8Mg0.2O3-δ composite cathodes prepared by infiltration.Journal of Power Sources, 2014,246(Supplement C):906-911. |
[21] | MUÑOZ-GARCÍA A B, BUGARIS D E, PAVONE M , et al. Unveiling structure-property relationships in Sr2Fe1.5Mo0.5O6-δ, an electrode material for symmetric solid oxide fuel cells.Journal of the American Chemical Society, 2012,134(15):6826-6833. |
[22] | XIAO G L, CHAO J, QING L , et al.. Ni modified ceramic anodes for solid oxide fuel cells.Journal of Power Sources, 2012,201:43-48. |
[23] | WANG Y, LIU T, LI M , et al. Exsolved Fe-Ni nano-particles from Sr2Fe1.3Ni0.2Mo0.5O6 perovskite oxide as a cathode for solid oxide steam electrolysis cells.Journal of Materials Chemistry A, 2016,4(37):14163-14169. |
[24] | KUBO J, UEDA W . Catalytic behavior of AMoO x(A=Ba, Sr) in oxidation of 2-propanol.Materials Research Bulletin, 2009,44(4):906-912. |
[25] | HE B, ZHAO L, SONG S , et al. Sr2Fe1.5Mo0.5O6-δ-Sm0.2Ce0.8O1.9 composite anodes for intermediate-temperature solid oxide fuel cells.Journal of The Electrochemical Society, 2012,159(5):B619-B626. |
[1] | ZHANG Wanwen, LUO Jianqiang, LIU Shujuan, MA Jianguo, ZHANG Xiaoping, YANG Songwang. Zirconia Spacer: Preparation by Low Temperature Spray-coating and Application in Triple-layer Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(2): 213-218. |
[2] | LIU Qi, ZHU Can, XIE Guizhen, WANG Jun, ZHANG Dongming, SHAO Gangqin. Optical Absorption and Photoluminescence Spectra of Ce-doped SrMgF4 Polycrystalline with Superlattice Structure [J]. Journal of Inorganic Materials, 2022, 37(8): 897-902. |
[3] | LIN Aming, SUN Yiyang. Stability of Low-index Surfaces of Cs2SnI6 Studied by First-principles Calculations [J]. Journal of Inorganic Materials, 2022, 37(6): 691-696. |
[4] | HUANG Zhihang, TENG Guanhongwei, TIE Peng, FAN Desong. Electrochromic Property of Perovskite Ceramic Films [J]. Journal of Inorganic Materials, 2022, 37(6): 611-616. |
[5] | JIAO Boxin, LIU Xingchong, QUAN Ziwei, PENG Yongshan, ZHOU Ruonan, LI Haimin. Performance of Perovskite solar cells Doped with L-arginine [J]. Journal of Inorganic Materials, 2022, 37(6): 669-675. |
[6] | ZHANG Guoqing, QIN Peng, HUANG Fuqiang. Reversible Conversion between Space-confined Lead Ions and Perovskite Nanocrystals for Confidential Information Storage [J]. Journal of Inorganic Materials, 2022, 37(4): 445-451. |
[7] | ZHANG Fengjuan, HAN Boning, ZENG Haibo. Perovskite Quantum Dot Photovoltaic and Luminescent Concentrator Cells: Current Status and Challenges [J]. Journal of Inorganic Materials, 2022, 37(2): 117-128. |
[8] | MING Yue, HU Yue, MEI Anyi, RONG Yaoguang, HAN Hongwei. Application of Lead Acetate Additive for Printable Perovskite Solar Cell [J]. Journal of Inorganic Materials, 2022, 37(2): 197-203. |
[9] | WANG Wanhai, ZHOU Jie, TANG Weihua. Passivation Strategies of Perovskite Film Defects for Solar Cells [J]. Journal of Inorganic Materials, 2022, 37(2): 129-139. |
[10] | JIAO Zhixiang, JIA Fanhao, WANG Yongchen, CHEN Jianguo, REN Wei, CHENG Jinrong. Curie Temperature Prediction of BiFeO3-PbTiO3-BaTiO3 Solid Solution Based on Machine Learning [J]. Journal of Inorganic Materials, 2022, 37(12): 1321-1328. |
[11] | XU Tingting, LI Yunyun, WANG Qian, WANG Jingkang, REN Guohao, SUN Dazhi, WU Yuntao. Centimeter-sized Cs3Cu2I5 Single Crystal: Synthesized by Low-cost Solution Method and Optical and Scintillation Properties [J]. Journal of Inorganic Materials, 2022, 37(10): 1129-1134. |
[12] | YANG Xinyue, DONG Qingshun, ZHAO Weidong, SHI Yantao. 4-Chlorobenzylamine-based 2D/3D Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2022, 37(1): 72-78. |
[13] | LIU Wenwen, HU Zhilei, WANG Li, CAO Mengsha, ZHANG Jing, ZHANG Jing, ZHANG Shuai, YUAN Ningyi, DING Jianning. Passiviation of L-3-(4-Pyridyl)-alanine on Interfacial Defects of Perovskite Solar Cell [J]. Journal of Inorganic Materials, 2021, 36(6): 629-636. |
[14] | ZHANG Xiaoyan, LIU Xinyue, YAN Jinhua, GU Yaohang, QI Xiwei. Preparation and Property of High Entropy (La0.2Li0.2Ba0.2Sr0.2Ca0.2)TiO3 Perovskite Ceramics [J]. Journal of Inorganic Materials, 2021, 36(4): 379-385. |
[15] | DONG Zhengming, LI Xiu, CHEN Chen, CAO Minghe, YI Zhiguo. Photostriction of NBT-BNT Ceramics [J]. Journal of Inorganic Materials, 2021, 36(3): 277-282. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||