Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (10): 1097-1102.DOI: 10.15541/jim20190058
Special Issue: 离子电池材料
Previous Articles Next Articles
WANG Jia-Hu1,WANG Wen-Xin1,DU Peng1,HU Fang-Dong1,JIANG Xiao-Lei1(),YANG Jian2()
Received:
2019-01-28
Revised:
2019-03-26
Published:
2019-09-23
Online:
2019-05-29
Supported by:
CLC Number:
WANG Jia-Hu, WANG Wen-Xin, DU Peng, HU Fang-Dong, JIANG Xiao-Lei, YANG Jian. Synthesis of Na3V2(PO4)2F3@V2O5-x as Cathode Material for Sodium-ion Battery[J]. Journal of Inorganic Materials, 2019, 34(10): 1097-1102.
Fig. 3 (a) XPS spectrum of V2p of NVPF@VO, (b) XPS spectra of V2p of NVPF@VO sputtered by Ar+ plasmon for different time, (c) mole ratio of V5+/V4+ varied with the sputtering time, and (d) TG curve of NVPF@VO measured at a heating rate of 2 ℃?min-1 in air
Fig. 4 NVPF@VO and NVPF as a cathode material for sodium-ion batteries: charge/discharge profiles of (a) NVPF and (b) NVPF@VO at 0.2C, (c) cycling performance and (d) rate capacity of NVPF and NVPF@VO, and (e) long cycling performances of NVPF@VO and NVPF at 1C
[1] | XIAO N, PAN Y, SONG Y ,et al. Electrochemical behavior of Sb-Si nanocomposite thin films as anode materials for sodium-ion batteries. Journal of Inorganic Materials, 2018,33(5):494-500. |
[2] | TANG W J, WANG X L, XIE D , et al.Hollow metallic 1T MoS2 arrays grown on carbon cloth: a freestanding electrode for sodium ion batteries. Journal of Materials Chemistry A, 2018,6(37):18318-18324. |
[3] | QI Y, MU L, ZHAO J ,et al. Multiscale grapheme-based materials for applications in sodium ion batteries. Advanced Energy Materials, 2019,9(8):1803342. |
[4] | SU D W, WANG G X . Single-crystalline bilayered V2O5 nanobelts for high-capacity sodium-ion batteries. ACS Nano, 2013,7(12):11218-11226. |
[5] | LI P, JEONG J Y, JIN B J ,et al. Vertically oriented MoS2 with spatially controlled geometry on nitrogenous graphene sheets for high-performance sodium-ion batteries. Advanced Energy Materials, 2018,8(19):1703300. |
[6] | ZHONG X, YANG Z Z, JIANG Y ,et al. Carbon-coated Na3V2(PO4)3 anchored on freestanding graphite foam for high-performance sodium-ion cathodes. ACS Applied Materials & Interfaces, 2016,8(47):32360-32365. |
[7] | KIM D J, HERMANN K R, PROKOFJEVS A ,et al. Redox-active macrocycles for organic rechargeable batteries. Journal of the American Chemical Society, 2017,139(19):6635-6643. |
[8] | SHAKOOR R A, SEO D H, KIM H ,et al.A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteries. Journal of Materials Chemistry, 2012,22(38):20535-20541. |
[9] | ZHANG J, LIU W, HU H ,et al. An advanced blackberry-shaped Na3V2(PO4)3 cathode: assists in high-rate performance and long-life stability. Electrochimica Acta, 2018,292:736-741. |
[10] | ZHU C, FU Y, YU Y ,et al. Designed nanoarchitectures by electrostatic spray deposition for energy storage. Advanced Materials, 2019,31(1):1803408. |
[11] | SHEN C, LONG H, WANG G C ,et al. Na3V2(PO4)2F3@C dispersed within carbon nanotube frameworks as a high tap density cathode for high-performance sodium-ion batteries. Journal of Materials Chemistry A, 2018,6(14):6007-6014. |
[12] | BIANCHINI M, BRISSET N, FAUTH F ,et al. Na3V2(PO4)2F3 revisited: a high-resolution diffraction study. Chemistry of Materials, 2014,26(14):4238-4247. |
[13] | ZHAO J, GAO Y, LIU Q ,et al. High rate capability and enhanced cyclability of Na3V2(PO4)2F3 cathode by inβsitu coating of carbon nanofibers for sodium-ion battery applications. Chemistry-A European Journal, 2018,24(12):2913-2919. |
[14] | WANG H L, YANG Y, LIANG Y Y ,et al. LiMn1-xFexPO4 nanorods grown on graphene sheets for ultrahigh-rate-performance lithium ion batteries. Angewandte Chemie International Edition, 2011,50(32):7364-7368. |
[15] | ZHANG Y, GUO S R, XU H Y . Synthesis of uniform hierarchical Na3V1.95Mn0.05(PO4)2F3@C hollow microspheres as a cathode material for sodium-ion batteries. Journal of Materials Chemistry A, 2018,6(10):4525-4534. |
[16] | YI H M, LING M X, XU W B ,et al. VSC-doping and VSU-doping of Na3V2-xTix(PO4)2F3 compounds for sodium ion battery cathodes: analysis of electrochemical performance and kinetic properties. Nano Energy, 2018,47:340-352. |
[17] | ZHUO H T, WANG X Y, TANG A P ,et al. The preparation of NaV1-xCrxPO4F cathode materials for sodium-ion battery.Journal of Power Sources, 2006,160:698-703. |
[18] | JIANG T, CHEN G, LI A ,et al. Sol-Gel preparation and electrochemical properties of Na3V2(PO4)2F3/C composite cathode material for lithium ion batteries.Journal of Alloys and Compounds, 2009,478:604-607. |
[19] | LIU Q, WANG D, YANG X ,et al. Carbon-coated Na3V2(PO4)2F3 nanoparticles embedded in a mesoporous carbon matrix as a potential cathode material for sodium-ion batteries with superior rate capability and long-term cycle life.Journal of Materials Chemistry A, 2015,3(43):21478-21485. |
[20] | DOMINKO R, BELE M, GABERSCEK M ,et al. Impact of the carbon coating thickness on the electrochemical performance of LiFePO4/C composites.Journal of The Electrochemical Society, 2005,152(3):A607-A610. |
[21] | XIA X H, DENG S J, XIE D ,et al. Boosting sodium ion storage by anchoring MoO2 on vertical graphene arrays.Journal of Materials Chemistry A, 2018,6(32):15546-15552. |
[22] | JIANG X L, XU H Y, MAO H Z , et al.Surface-disordered and oxygen-deficient LiTi2-xMnx(PO4-y)3 nanoparticles for enhanced lithium-ion storage. Journal of Power Sources, 2016,320:94-103. |
[23] | BIANCHINI M, XIAO P H, WANG Y , et al.Additional sodium insertion into polyanionic cathodes for higher-energy Na-ion batteries.Advanced Energy Materials, 2017,7(18):1700514. |
[24] | ZHU C B, WU C, CHEN C C , et al.A high power-high energy Na3V2(PO4)2F3 sodium cathode: investigation of transport parameters, rational design and realization.Chemistry of Materials, 2017,29(12):5207-5215. |
[25] | CAI Y S, CAO X X, LUO Z G , et al.Caging Na3V2(PO4)2F3 microcubes in cross-linked graphene enabling ultrafast sodium storage and long-term cycling.Advanced Science, 2018,5:1800680. |
[26] | GUO J Z, WANG P F, WU X L , et al.High-energy/power and low-temperature cathode for sodium-ion batteries: in situ XRD study and superior full-cell performance.Advanced Materials, 2017,29(12):1701968. |
[27] | JIN H, DONG J, UCHAKER E , et al.Three dimensional architecture of carbon wrapped multilayer Na3V2O2(PO4)2F nanocubes embedded in graphene for improved sodium ion batteries.Journal of Materials Chemistry A, 2015,3(34):17563-17568. |
[28] | CHEN L, JIANG X L, WANG N ,et al. Surface-amorphous and oxygen-deficient Li3VO4-δ as a promising anode material for lithium- ion batteries.Advanced Science, 2015,2(9):1500090. |
[29] | RAJU V, RAINS J, GATES C , et al.Superior cathode of sodium- ion batteries: orthorhombic V2O5 nanoparticles generated in nanoporous carbon by ambient hydrolysis deposition.Nano letters, 2014,14(7):4119-4124. |
[30] | LIU Z, HU Y Y, DUNSTAN M T , et al.Local structure and dynamics in the Na ion battery positive electrode material Na3V2(PO4)2F3. Chemistry of Materials, 2014,26(8):2513-2521. |
[31] | SONG W, CAO X, WU Z ,et al. Investigation of the sodium ion pathway and cathode behavior in Na3V2(PO4)2F3 combined via a first principles calculation.Langmuir, 2014,30(41):12438-12446. |
[32] | DENG C, ZHANG S, YANG S Y ,et al. Synthesis and characterization of Li2Fe0.97M0.03SiO4(M=Zn 2+, Cu 2+, Ni 2+) cathode materials for lithium ion batteries.Journal of Power Sources , 2011,196:386-392. |
[1] | KONG Guoqiang, LENG Mingzhe, ZHOU Zhanrong, XIA Chi, SHEN Xiaofang. Sb Doped O3 Type Na0.9Ni0.5Mn0.3Ti0.2O2 Cathode Material for Na-ion Battery [J]. Journal of Inorganic Materials, 2023, 38(6): 656-662. |
[2] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[3] | LI Tao, CAO Pengfei, HU Litao, XIA Yong, CHEN Yi, LIU Yuejun, SUN Aokui. NH4+ Assisted Interlayer-expansion of MoS2: Preparation and Its Zinc Storage Performance [J]. Journal of Inorganic Materials, 2023, 38(1): 79-86. |
[4] | WANG Yang, FAN Guangxin, LIU Pei, YIN Jinpei, LIU Baozhong, ZHU Linjian, LUO Chengguo. Microscopic Mechanism of K+ Doping on Performance of Lithium Manganese Cathode for Li-ion Battery [J]. Journal of Inorganic Materials, 2022, 37(9): 1023-1029. |
[5] | LI Wenbo, HUANG Minsong, LI Yueming, LI Chilin. CoS2 as Cathode Material for Magnesium Batteries with Dual-salt Electrolytes [J]. Journal of Inorganic Materials, 2022, 37(2): 173-181. |
[6] | WANG Jing, XU Shoudong, LU Zhonghua, ZHAO Zhuangzhuang, CHEN Liang, ZHANG Ding, GUO Chunli. Hollow-structured CoSe2/C Anode Materials: Preparation and Sodium Storage Properties for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(12): 1344-1350. |
[7] | LIU Fangfang, CHUAN Xiuyun, YANG Yang, LI Aijun. Influence of N/S Co-doping on Electrochemical Property of Brucite Template Carbon Nanotubes [J]. Journal of Inorganic Materials, 2021, 36(7): 711-717. |
[8] | ZHAN Jing,XU Changfan,LONG Yiyu,LI Qihou. Bi2Mn4O10: Preparation by Polyacrylamide Gel Method and Electrochemical Performance [J]. Journal of Inorganic Materials, 2020, 35(7): 827-833. |
[9] | ZHU Zeyang,WEI Jishi,HUANG Jianhang,DONG Xiangyang,ZHANG Peng,XIONG Huanming. Preparation of ZnO Nanorods with Lattice Vacancies and Their Application in Ni-Zn Battery [J]. Journal of Inorganic Materials, 2020, 35(4): 423-430. |
[10] | LI Xue-Lin, ZHU Jian-Feng, JIAO Yu-Hong, HUANG Jia-Xuan, ZHAO Qian-Nan. Manganese Dioxide Morphology on Electrochemical Performance of Ti3C2Tx@MnO2 Composites [J]. Journal of Inorganic Materials, 2020, 35(1): 119-125. |
[11] | SUN Xiao-Lu,SONG Xiao-Fei,LIU Yan-Hua,WU Yue,CAI Yi-Bing,ZHAO Hong-Mei. Electrospun FeMnO3 Nanofibrous Mats: Preparation and Electrochemical Property [J]. Journal of Inorganic Materials, 2019, 34(7): 709-714. |
[12] | Yong LI, Wei-Xin HE, Xin-Yue ZHENG, Sheng-Lan YU, Hai-Tong LI, Hong-Yi LI, Rong ZHANG, Yu WANG. Prussian Blue Cathode Materials for Aqueous Sodium-ion Batteries:Preparation and Electrochemical Performance [J]. Journal of Inorganic Materials, 2019, 34(4): 365-372. |
[13] | WANG Wu-Lian, ZHANG Jun, WANG Qiu-Shi, CHEN Liang, LIU Zhao-Ping. High-quality Fe4[Fe(CN)6]3 Nanocubes: Synthesis and Electrochemical Performance as Cathode Material for Aqueous Sodium-ion Battery [J]. Journal of Inorganic Materials, 2019, 34(12): 1301-1308. |
[14] | LEE Sai-Xi, WANG Xue-Yin, GU Qing-Wen, XIA Yong-Gao, LIU Zhao-Ping, HE Jie. Tuning Electrochemical Performance through Non-stoichiometric Compositions in High-voltage Spinel Cathode Materials [J]. Journal of Inorganic Materials, 2018, 33(9): 993-1000. |
[15] | FAN Guang-Xin, LIU Ze-Ping, WEN Yin, LIU Bao-Zhong. Surface Treatment on Structure and Property of LiNi0.8Co0.15Al0.05O2 by Silane Coupling Agent [J]. Journal of Inorganic Materials, 2018, 33(7): 749-755. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||