Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (10): 1041-1046.DOI: 10.15541/jim20190029
Special Issue: 热电材料与器件
Previous Articles Next Articles
CHEN Hong-Yi1,2,3,SHI Xun1,2,CHEN Li-Dong1,2,QIU Peng-Fei1,2()
Received:
2019-01-15
Revised:
2019-03-14
Published:
2019-09-23
Online:
2019-05-29
Supported by:
CLC Number:
CHEN Hong-Yi, SHI Xun, CHEN Li-Dong, QIU Peng-Fei. Measurement and Analysis of Cu2S Thermal Diffusivity during Phase Transition[J]. Journal of Inorganic Materials, 2019, 34(10): 1041-1046.
Fig. 2 (a) Schematic map of thermal diffusivity test for Cu/Cu2S double-layer structure, (b) measured temperature dependence of thermal diffusivity for Cu/Cu2S double-layer structure
Fig. 3 (a) Schematic map of the reformed LFA457 instrument for the in-situ temperature characterization during measurement, (b) time dependence of temperature on the upper surface of the measured sample during the measurement with inset showing the infrared signal detected by the HgCdTe detectors
Fig. 4 (a) Theoretical maximum temperature increment on the upper surface of the measured sample during measurement and (b) measured temperature dependence of thermal diffusivity for a series of graphite/Cu2S double-layer structure samples The thicknesses of the graphite layers are 0, 0.13, 0.30, 0.64, and 1.34 mm
Fig. 5 (a) Model for thermal diffusivity analysis in a graphite/Cu2S double-layer structure, (b) intrinsic thermal diffusivity of Cu2S analyzed from the measured thermal diffusivity of the graphite/Cu2S double-layer structure samples.
[1] | GOLDSMID H. Thermoelectric Refrigeration. Berlin: Springer, 2013. |
[2] | SALES B C . Smaller is cooler. Science, 2002,295(5558):1248-1249. |
[3] | SNYDER G J, TOBERER E S . Complex Thermoelectric Materials. materials for sustainable energy: a collection of peer-reviewed research and review articles from nature publishing group, 2011, 101-110. |
[4] | SHI X, CHEN L, UHER C . Recent advances in high-performance bulk thermoelectric materials. International Materials Reviews, 2016,61(6):379-415. |
[5] | ZHAO D, TAN G . A review of thermoelectric cooling: materials, modeling and applications. Applied Thermal Engineering, 2014,66(1/2):15-24. |
[6] | LIU H, SHI X, XU F , et al.Copper ion liquid-like thermoelectrics. Nature Materials, 2012,11(5):422. |
[7] | BALLIKAYA S, CHI H, SALVADOR J R , et al.Thermoelectric properties of Ag-doped Cu2Se and Cu2Te. Journal of Materials Chemistry A, 2013,1(40):12478-12484. |
[8] | HE Y, DAY T, ZHANG T , et al.High thermoelectric performance in non-toxic earth-abundant copper sulfide. Advanced Materials, 2014,26(23):3974-3978. |
[9] | HE Y, LU P, SHI X , et al.Ultrahigh thermoelectric performance in mosaic crystals. Advanced Materials, 2015,27(24):3639-3644. |
[10] | ISHIWATA S, SHIOMI Y, LEE J S , et al.Extremely high electron mobility in a phonon-glass semimetal. Nature Materials, 2013,12(6):512. |
[11] | WANG X, QIU P, ZHANG T ,et al.Compound defects and thermoelectric properties in ternary CuAgSe-based materials. Journal of Materials Chemistry A, 2015,3(26):13662-13670. |
[12] |
TEWARI G C, TRIPATHI T S, RASTOGI A K . Thermoelectric properties of layer-antiferromagnet CuCrS2. Journal of Electronic Materials, 2010,39(8):1133-1139.
DOI |
[13] | BHATTACHARYA S, BASU R, BHATT R , et al.CuCrSe2: a high performance phonon glass and electron crystal thermoelectric material. Journal of Materials Chemistry A, 2013,1(37):11289-11294. |
[14] | JIANG B, QIU P, EIKELAND E , et al.Cu8GeSe6-based thermoelectric materials with an argyrodite structure. Journal of Materials Chemistry C, 2017,5(4):943-952. |
[15] | LI W, LIN S, GE B , et al.Low sound velocity contributing to the high thermoelectric performance of Ag8SnSe6. Advanced Science, 2016,3(11):1600196. |
[16] | LIU H, YUAN X, LU P , et al.Ultrahigh thermoelectric performance by electron and phonon critical scattering in Cu2Se1-xIx. Advanced Materials, 2013,25(45):6607-6612. |
[17] | BROWN D R, DAY T, BORUP K A ,et al.Phase transition enhanced thermoelectric figure-of-merit in copper chalcogenides. APL Materials, 2013,1(5):052107. |
[18] | CHEN H Y, YUE Z M, REN D D ,et al.Thermal conductivity during phase transitions. Advanced Materials, 2018,1:1806518. |
[19] | DUCHEMIN S, GUASTAVINO F, RAISIN C . Etude experimentale du seuil d'emission photoelectrique du Cu2S massif. Solid State Communications, 1978,26(3):187-189. |
[20] | NAKAYAMA N . Electrical and optical properties of Cu2-xS (0≤x≤0.2). Journal of the Physical Society of Japan, 1968,25(1):290-291. |
[21] | AXELEVITCH A, GORENSTEIN B, GOLAN G . Investigation of optical transmission in thin metal films. Physics Procedia, 2012,32:1-13. |
[22] | PARKER W J, JENKINS R J, BUTLER C P , et al.Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. Journal of Applied Physics, 1961,32(9):1679-1684. |
[23] | FRANK P I, DAVID P D, THEODORE L B . Fundamentals of Heat and Mass Transfer[J]. New York: Wiley, 2002. |
[24] | NULL M R, LOZIER W W, MOORE A W . Thermal diffusivity and thermal conductivity of pyrolytic graphite from 300 to 2700 K. Carbon, 1973,11(2):81-87. |
[1] | CHEN Mingyue, YAN Zhichao, CHEN Jing, LI Minjuan, LIU Zhiyong, CAI Chuanbing. YBa2Cu3O7-δ Thin Film: Preparation by BaCl2/BaF2-MOD Method and Superconducting Property [J]. Journal of Inorganic Materials, 2023, 38(2): 199-204. |
[2] | REN PeiAn, WANG Cong, ZI Peng, TAO Qirui, SU Xianli, TANG Xinfeng. Effect of Te and In Co-doping on Thermoelectric Properties of Cu2SnSe3 Compounds [J]. Journal of Inorganic Materials, 2022, 37(10): 1079-1086. |
[3] | JIN Min, BAI Xudong, ZHANG Rulin, ZHOU Lina, LI Rongbin. Metal Sulfide Ag2S: Fabrication via Zone Melting Method and Its Thermoelectric Property [J]. Journal of Inorganic Materials, 2022, 37(1): 101-106. |
[4] | FAN Wenqi, SONG Xuemei, HUANG Yiling, CHANG Chengkang. Structure Change and Phase Transition Distribution of YSZ Coating Caused by CMAS Corrosion [J]. Journal of Inorganic Materials, 2021, 36(10): 1059-1066. |
[5] | YU Ying, DU Hongliang, YANG Zetian, JIN Li, QU Shaobo. Electrocaloric Effect of Lead-free Bulk Ceramics: Current Status and Challenges [J]. Journal of Inorganic Materials, 2020, 35(6): 633-646. |
[6] | XU Dong, ZHU Yufang, ZHENG Yuanyi, LUO Yu, CHEN Hangrong. Injectable Magnetic Liquid-solid Phase Transition Material for MR Imaging and Low-temperature Magnetocaloric Therapy of Osteosarcoma [J]. Journal of Inorganic Materials, 2020, 35(11): 1277-1282. |
[7] | HAN Liu-Yang, GUO Shao-Bo, YAN Shi-Guang, RÉMIENS Denis, WANG Gen-Shui, DONG Xian-Lin. Electrocaloric Effect in Pb0.3CaxSr0.7-xTiO3 Ceramics Near Room Temperature [J]. Journal of Inorganic Materials, 2019, 34(9): 1011-1014. |
[8] | ZHANG Xiao-Chen, WANG Xue-Mei, WANG Chun-Lei. Influences of Sintering Methods on Microstructure and Physical Property of (K,Na,Li)(Nb,Sb,Ta)O3 Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2019, 34(7): 721-726. |
[9] | ZHOU Yi-Ming, ZHOU Yu-Ling, PANG Qian-Tao, SHAO Jian-Wei, ZHAO Li-Dong. Different Doping Sites of Ag on Cu2SnSe3 and Their Thermoelectric Property [J]. Journal of Inorganic Materials, 2019, 34(3): 301-309. |
[10] | GONG Hao, SU Xian-Li, YAN Yong-Gao, TANG Xin-Feng. Ultra-fast Synthesis of Cu2S Thermoelectric Materials under Pulsed Electric Field [J]. Journal of Inorganic Materials, 2019, 34(12): 1295-1300. |
[11] | CHENG Guo-Feng, RUAN Yin-Jie, SUN Yue, YIN Han-Di. Thermodynamic Stability and Thermal Expansion of Pure-phase BiFeO3 [J]. Journal of Inorganic Materials, 2019, 34(10): 1128-1133. |
[12] | CHENG Guo-Feng, RUAN Yin-Jie, SUN Yue, YIN Han-Di, XIE Qi-Yun. Stoichiometric Ratio on Phase Transformation in Reaction Sintering of BiFeO3 Ceramics Study: a High Temperature X-ray Diffraction Study [J]. Journal of Inorganic Materials, 2019, 34(10): 1035-1040. |
[13] | SUN Shu-Miao, YU Yang, MI Le, YU Yun, CAO Yun-Zhen, SONG Li-Xin. Effect of Sintering Temperature on Structure and Electric Performance of La0.67Ca0.33-xSrxMnO3 Ceramic [J]. Journal of Inorganic Materials, 2016, 31(9): 943-947. |
[14] | ZHAO Xiang-Yang, MAN Pei-Wen, XIE Tao, WU An-Hua, SU Liang-Bi. Crystal Growth and Characterization of the Rare-earth Orthoferrite Sm0.8Tb0.2FeO3 Single Crystal [J]. Journal of Inorganic Materials, 2016, 31(9): 1004-1008. |
[15] | ZHANG Sa, LIU Ying, LIU Yi-Xuan, CHENG Xuan, ZHANG Ying. Phase Transitions in PLZT Ceramics Observed by In-situ Raman Spectroscopy [J]. Journal of Inorganic Materials, 2014, 29(4): 399-404. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||