Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (6): 625-632.DOI: 10.15541/jim20180426
Special Issue: 乘风破浪的新能源材料; 优秀作者论文集锦; 优秀作者作品欣赏:能源材料
Previous Articles Next Articles
Wei-Jia XU,Da-Ping QIU,Shi-Qiang LIU,Min LI(),Ru YANG()
Received:
2018-09-13
Revised:
2018-12-11
Published:
2019-06-20
Online:
2019-05-23
Supported by:
CLC Number:
Wei-Jia XU, Da-Ping QIU, Shi-Qiang LIU, Min LI, Ru YANG. Preparation of Cork-derived Porous Activated Carbon for High Performance Supercapacitors[J]. Journal of Inorganic Materials, 2019, 34(6): 625-632.
Samples | SBET/ (m2?g-1) | aDave/ nm | Vt/ (cm3?g-1) | DFT Method | |||||
---|---|---|---|---|---|---|---|---|---|
S<1 nm/ (m2?g-1) | S1-2 nm/ (m2?g-1) | S2-4 nm/ (m2?g-1) | V<1 nm/ (cm3?g-1) | V1-2 nm/ (cm3?g-1) | V2-4 nm/ (cm3?g-1) | ||||
COAC-3.5 | 1044 | 2.19 | 0.57 | 1097 | 115 | 29 | 0.34 | 0.08 | 0.04 |
COAC-4.0 | 2169 | 2.20 | 1.19 | 975 | 554 | 221 | 0.33 | 0.37 | 0.26 |
COAC-4.5 | 2312 | 2.22 | 1.28 | 1191 | 485 | 247 | 0.40 | 0.35 | 0.29 |
COAC-5.0 | 1929 | 2.18 | 1.05 | 1087 | 423 | 172 | 0.36 | 0.29 | 0.21 |
Table S1 Porosity parameters of the COAC-n samples
Samples | SBET/ (m2?g-1) | aDave/ nm | Vt/ (cm3?g-1) | DFT Method | |||||
---|---|---|---|---|---|---|---|---|---|
S<1 nm/ (m2?g-1) | S1-2 nm/ (m2?g-1) | S2-4 nm/ (m2?g-1) | V<1 nm/ (cm3?g-1) | V1-2 nm/ (cm3?g-1) | V2-4 nm/ (cm3?g-1) | ||||
COAC-3.5 | 1044 | 2.19 | 0.57 | 1097 | 115 | 29 | 0.34 | 0.08 | 0.04 |
COAC-4.0 | 2169 | 2.20 | 1.19 | 975 | 554 | 221 | 0.33 | 0.37 | 0.26 |
COAC-4.5 | 2312 | 2.22 | 1.28 | 1191 | 485 | 247 | 0.40 | 0.35 | 0.29 |
COAC-5.0 | 1929 | 2.18 | 1.05 | 1087 | 423 | 172 | 0.36 | 0.29 | 0.21 |
Samples | N/at% | C/at% | O/at% | O-I/at% | O-II/at% | O-III/at% |
---|---|---|---|---|---|---|
COAC-3.5 | — | 86.65 | 13.35 | 5.85 | 4.58 | 2.92 |
COAC-4.0 | 1.42 | 81.51 | 17.07 | 7.87 | 5.78 | 3.42 |
COAC-4.5 | 1.34 | 86.12 | 12.54 | 4.04 | 3.77 | 4.73 |
COAC-5.0 | 1.37 | 82.79 | 15.84 | 7.78 | 5.24 | 2.82 |
Table S2 C, O and N contents of COAC-n samples from XPS analysis
Samples | N/at% | C/at% | O/at% | O-I/at% | O-II/at% | O-III/at% |
---|---|---|---|---|---|---|
COAC-3.5 | — | 86.65 | 13.35 | 5.85 | 4.58 | 2.92 |
COAC-4.0 | 1.42 | 81.51 | 17.07 | 7.87 | 5.78 | 3.42 |
COAC-4.5 | 1.34 | 86.12 | 12.54 | 4.04 | 3.77 | 4.73 |
COAC-5.0 | 1.37 | 82.79 | 15.84 | 7.78 | 5.24 | 2.82 |
Fig. 7 Electrochemical performance characteristics of COAC-n measured in a three-electrode system in the 6 mol/L KOH electrolyte: CV curves at (a) 1 mV/s and (b) 200 mV/s; (c) Galvanostatic charge/discharge curves at a current density of 0.1 A/g; (d) Specific capacitances at different current densities; (e) Nyquist plots in the frequency range from 10 kHz to 10 mHz with inset showing magnified figure of arc part
Fig. S1 Electrochemical performance of COAC-4.5 measured in two electrode system with 6 mol/L KOH electrolyte:(a), (b) CV curves at different scan rates; (c) Galvanostatic charge-discharge curves at different current densities; (d) Specific capacitances for a single electrode at different current densities; (e) Ragone plot of the symmetrical system; (f) Cycling stability at a current density of 5 A/g and inset is the charge-discharge curves of first cycle and 5000th cycle
Fig. S2 Electrochemical performance of COAC-4.5 measured in two electrode system with 1 mol/L Na2SO4 electrolyte: (a) CV curves of the cell operated in different voltage windows at a scan rate of 50 mV/s; (b) Galvanostatic charge/discharge curves of the cell at various current densities; (c) Specific capacitances for a single electrode at different current densities; (d) Ragone plot of COAC-4.5 and other carbon-based symmetrical supercapacitors
[1] |
DE WIT M, FAAIJ A . European biomass resource potential and costs. Biomass and Bioenergy, 2010,34(2):188-202.
DOI URL |
HAO Y X, QIAN M, XU J J , et al. Synthesis, microstructure and superconductivity of cotton-based porous carbon materials. Journal of Inorganic Materials, 2018,33(1):93-99. | |
[2] | SEVILLA M, MOKAYA R . Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy & Environmental Science, 2014,7(4):1250-1280. |
[3] |
WICKRAMARATNE N P, XU J, WANG M , et al. Nitrogen enriched porous carbon spheres: attractive materials for supercapacitor electrodes and CO2 adsorption. Chemistry of Materials, 2014,26(9):2820-2828.
DOI URL |
[4] |
ZHAI Y, DOU Y, ZHAO D , et al. Carbon materials for chemical capacitive energy storage. Advanced Materials, 2011,23(42):4828-4850.
DOI URL |
[5] |
ZHANG L L, ZHAO X S . Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews, 2009,38(9):2520-2531.
DOI URL |
[6] |
TIAN X, MA H, LI Z , et al. Flute type micropores activated carbon from cotton stalk for high performance supercapacitors. Journal of Power Sources, 2017,359:88-96.
DOI URL |
[7] |
YU K, ZHU H, QI H , et al. High surface area carbon materials derived from corn stalk core as electrode for supercapacitor. Diamond and Related Materials, 2018,88:18-22.
DOI URL |
[8] |
YANG C S, JANG Y S, JEONG H K . Bamboo-based activated carbon for supercapacitor applications. Curr. Appl. Phys., 2014,14(12):1616-1620.
DOI URL |
[9] | CHEN C, ZHANG Y, LI Y , et al. All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy & Environmental Science, 2017,10(2):538-545. |
[10] | YANG R, WANG Y, LI M , et al. A new carbon/ferrous sulfide/ iron composite prepared by an in situ carbonization reduction method from hemp (Cannabis sativa L.) stems and its Cr (VI) removal ability. ACS Sustainable Chemistry & Engineering, 2014,2(5):1270-1279. |
[11] |
YU Z F, WANG X Z, HOU Y N , et al. Preparation of nitrogen- doped porous carbon by molten salt method and its catalytic desulfurization performance. Journal of Inorganic Materials, 2017,32(7):770-776.
DOI URL |
[12] | ATANES E NIETO-MÁRQUEZ A, CAMBRA A, , et al. Adsorption of SO2 onto waste cork powder-derived activated carbons. Chemical Engineering Journal, 2012,211(22):60-67. |
[13] |
JAIN A, BALASUBRAMANIAN R, SRINIVASAN M P . Production of high surface area mesoporous activated carbons from waste biomass using hydrogen peroxide-mediated hydrothermal treatment for adsorption applications. Chemical Engineering Journal, 2015,273:622-629.
DOI URL |
[14] |
KIM M J, JUNG M J, KIM M I , et al. Adsorption characteristics of toluene gas using fluorinated phenol-based activated carbons. Applied Chemistry for Engineering, 2015,26(5):587-592.
DOI URL |
[15] |
ROSAS J M, RUIZ-ROSAS R, RODRÍGUEZ-MIRASOL J , et al. Kinetic study of SO2, removal over lignin-based activated carbon. Chemical Engineering Journal, 2017,307:707-721.
DOI URL |
[16] |
LULAI E C, CORSINI D L . Differential deposition of suberin phenolic and aliphatic domains and their roles in resistance to infection during potato tuber (Solanum tuberosum L.) wound-healing. Physiological and Molecular Plant Pathology, 1998,53(4):209-222.
DOI URL |
[17] |
PILAO R, RAMALHO E, PINHO C . Overall characterization of cork dust explosion. Journal of Hazardous Materials, 2006,133(1):183-195.
DOI URL |
[18] |
YANG H P, YAN R, CHEN H P , et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 2007,86(12):1781-1788.
DOI URL |
[19] |
CORDEIRO N, BELGACEM N M, GANDINI A , et al. Cork suberin as a new source of chemicals: 2. Crystallinity, thermal and rheological properties. Bioresource Technology, 1998,63(2):153-158.
DOI URL |
[20] |
JIANG G, NOWAKOWSKI D J, BRIDGWATER A V . A systematic study of the kinetics of lignin pyrolysis. Thermochimica Acta, 2010,498(1):61-66.
DOI URL |
[21] |
JOHN M J, THOMAS S . Biofibres and biocomposites. Carbohydrate Polymers, 2008,71(3):343-364.
DOI URL |
[22] |
RAYMUNDO-PIÑERO E, LEROUX F, BÉGUIN F . A high- performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer. Advanced Materials, 2006,18(14):1877-1882.
DOI URL |
[23] | LI Y, ZHAO Y, CHENG H , et al. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. Journal of the American Chemical Society, 2011,134(1):15-18. |
[24] |
BINIAK S, SZYMAŃSKI G, SIEDLEWSKI J , et al. The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon, 1997,35(12):1799-1810.
DOI URL |
[25] | ZHAO Y F, RAN W, HE J , et al. Oxygen-rich hierarchical porous carbon derived from artemia cyst shells with superior electrochemical performance. ACS Applied Materials & Interfaces, 2015,7(2):1132-1139. |
[26] |
ZHU H, WANG X L, YANG F , et al. Promising carbons for supercapacitors derived from fungi. Advanced Materials, 2011,23(24):2745-2748.
DOI URL |
[27] | JIANG L, SHENG L, LONG C , et al. Functional pillared graphene frameworks for ultrahigh volumetric performance supercapacitors. Advanced Energy Materials, 2015, 5(15): 1500771-1-9. |
[28] |
XU B, HOU S, CAO G , et al. Sustainable nitrogen-doped porous carbon with high surface areas prepared from gelatin for supercapacitors. Journal of Materials Chemistry, 2012,22(36):19088-19093.
DOI URL |
[29] |
ZHONG C, DENG Y D, HU W B , et al. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chemical Society Reviews, 2015,44(21):7484-7539.
DOI URL |
[30] | YU A, CHABOT V, ZHANG J. Electrochemical supercapacitors for energy storage and delivery:fundamentals and applications. CRC Press, 2013. |
[31] |
WANG Q, YAN J, WANG Y B , et al. Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors. Carbon, 2014,67(2):119-127.
DOI URL |
[32] |
SUN G L, LI B, RAN J B , et al. Three-dimensional hierarchical porous carbon/graphene composites derived from graphene oxide- chitosan hydrogels for high performance supercapacitors. Electrochimica Acta, 2015,171:13-22.
DOI URL |
[33] |
LONG C L, CHEN X, JIANG L L , et al. Porous layer-stacking carbon derived from in-built template in biomass for high volumetric performance supercapacitors. Nano Energy, 2015,12:141-151.
DOI URL |
[34] | YAN J, WANG Q, WEI T, FAN Z J . Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater., 2014, 4(4): 1300816-1-43. |
[1] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
[2] | ZHOU Fan, BI Hui, HUANG Fuqiang. Ultra-large Specific Surface Area Activated Carbon Synthesized from Rice Husk with High Adsorption Capacity for Methylene Blue [J]. Journal of Inorganic Materials, 2021, 36(8): 893-903. |
[3] | LI Chuang, YANG Qingfeng, LU Shengsen, LIU Yangqiao. Adsorption of Phosphonate Antiscalant HEDP from Reverse Osmosis Concentrates by La/FeOOH@PAC [J]. Journal of Inorganic Materials, 2021, 36(8): 841-846. |
[4] | SUN Peng, ZHANG Shaoning, BI Hui, DONG Wujie, HUANG Fuqiang. Tuning Nitrogen Species and Content in Carbon Materials through Constructing Variable Structures for Supercapacitors [J]. Journal of Inorganic Materials, 2021, 36(7): 766-772. |
[5] | LIU Fangfang, CHUAN Xiuyun, YANG Yang, LI Aijun. Influence of N/S Co-doping on Electrochemical Property of Brucite Template Carbon Nanotubes [J]. Journal of Inorganic Materials, 2021, 36(7): 711-717. |
[6] | WANG Yiliang, AI Yunlong, YANG Shuwei, LIANG Bingliang, ZHENG Zhenhuan, OUYANG Sheng, HE Wen, CHEN Weihua, LIU Changhong, ZHANG Jianjun, LIU Zhiyong. Facile Synthesis and Supercapacitor Performance of M3O4(M=FeCoCrMnMg) High Entropy Oxide Powders [J]. Journal of Inorganic Materials, 2021, 36(4): 425-430. |
[7] | LI Zehui,TAN Meijuan,ZHENG Yuanhao,LUO Yuyang,JING Qiushi,JIANG Jingkun,LI Mingjie. Application of Conductive Metal Organic Frameworks in Supercapacitors [J]. Journal of Inorganic Materials, 2020, 35(7): 769-780. |
[8] | CHEN Jun,MA Pei-Hua,ZHANG Cheng,Laurent RUHLMANN,LYU Yao-Kang. Preparation and Electrochemical Property of New Multifunctional Inorganic/Organic Composite Film [J]. Journal of Inorganic Materials, 2020, 35(2): 217-223. |
[9] | FEI Mingjie, ZHANG Renping, ZHU Guisheng, YU Zhaozhe, YAN Dongliang. Preparation and Pseudocapacitive Properties of Phosphate Ion-doped MnFe2O4 [J]. Journal of Inorganic Materials, 2020, 35(10): 1137-1141. |
[10] | DING Zhuofeng, YANG Yongqiang, LI Zaijun. Synthesis and Supercapacitor Performance of Histidine-functionalized Carbon Dots/Graphene Aerogel [J]. Journal of Inorganic Materials, 2020, 35(10): 1130-1136. |
[11] | LI Teng-Fei, HUANG Lu-Jun, YAN Xu-Dong, LIU Qing-Lei, GU Jia-Jun. Ti3C2Tx/Wood Carbon as High-areal-capacity Electrodes for Supercapacitors [J]. Journal of Inorganic Materials, 2020, 35(1): 126-130. |
[12] | ZHANG Tian-Yu, CUI Cong, CHENG Ren-Fei, HU Min-Min, WANG Xiao-Hui. Fabrication of Planar Porous MXene/Carbon Composite Electrodes by Simultaneous Ammonization/Carbonization [J]. Journal of Inorganic Materials, 2020, 35(1): 112-118. |
[13] | MA Ya-Nan, LIU Yu-Fei, YU Chen-Xu, ZHANG Chuan-Kun, LUO Shi-Jun, GAO Yi-Hua. Monolayer Ti3C2Tx Nanosheets with Different Lateral Dimension: Preparation and Electrochemical Property [J]. Journal of Inorganic Materials, 2020, 35(1): 93-98. |
[14] | Wei LIU, Kai ZHENG, Dong-Hong WANG, Yi-San LEI, Huai-Lin FAN. Co3O4 Nanowire Arrays@Activated Carbon Fiber Composite Materials: Facile Hydrothermal Synthesis and Its Electrochemical Application [J]. Journal of Inorganic Materials, 2019, 34(5): 487-492. |
[15] | Yuan WANG, Jie LIN, Zheng CHANG, Tian-Quan LIN, Meng QIAN, Fu-Qiang HUANG. Electrodeposited Nanoflakes of RuOx·nH2O on Three-dimensional Graphene for Flexible Supercapacitors [J]. Journal of Inorganic Materials, 2019, 34(4): 455-460. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||