Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (6): 611-617.DOI: 10.15541/jim20180398
Previous Articles Next Articles
Kai LI1,Xiao LI1,Jian LI2,Jia-Miao XIE3
Received:
2018-09-03
Revised:
2018-11-12
Published:
2019-06-20
Online:
2019-05-23
Supported by:
CLC Number:
Kai LI, Xiao LI, Jian LI, Jia-Miao XIE. Structural Stability of Ni-Fe Supported Solid Oxide Fuel Cells Based on Stress Analysis[J]. Journal of Inorganic Materials, 2019, 34(6): 611-617.
Materials | Temperature/℃ | Elasticity modulus/GPa | Poisson ratio | CTE/ ×10-6 |
---|---|---|---|---|
N | 25 | 180 | 0.310 | 16.3 |
1350 | 176 | 0.310 | 15.9 | |
NF91 | 25 | 150 | 0.268 | 14.8 |
1350 | 148 | 0.281 | 14.1 | |
NF73 | 25 | 146 | 0.270 | 14.2 |
1350 | 143 | 0.280 | 13.6 | |
NF55 | 25 | 140 | 0.280 | 14.1 |
1350 | 132 | 0.290 | 13.6 | |
NiO+GDC | 25 | 190 | 0.292 | 14.2 |
1350 | 192 | 0.300 | 13.8 | |
GDC | 25 | 260 | 0.262 | 13.6 |
1350 | 290 | 0.264 | 13.1 |
Table 1 Material properties of MS-SOFC components
Materials | Temperature/℃ | Elasticity modulus/GPa | Poisson ratio | CTE/ ×10-6 |
---|---|---|---|---|
N | 25 | 180 | 0.310 | 16.3 |
1350 | 176 | 0.310 | 15.9 | |
NF91 | 25 | 150 | 0.268 | 14.8 |
1350 | 148 | 0.281 | 14.1 | |
NF73 | 25 | 146 | 0.270 | 14.2 |
1350 | 143 | 0.280 | 13.6 | |
NF55 | 25 | 140 | 0.280 | 14.1 |
1350 | 132 | 0.290 | 13.6 | |
NiO+GDC | 25 | 190 | 0.292 | 14.2 |
1350 | 192 | 0.300 | 13.8 | |
GDC | 25 | 260 | 0.262 | 13.6 |
1350 | 290 | 0.264 | 13.1 |
[1] |
TUCKER M C . Progress in metal-supported solid oxide fuel cells: a review. Journal of Power Sources, 2010,195(15):4570-4582.
DOI URL |
[2] |
ZHOU Y C, YE X F, WANG S R . All symmetrical metal supported solid oxide fuel cells. Journal of Inorganic Materials, 2016,31(7):769-772.
DOI URL |
[3] |
HUI S, YANG D, Wang Z , et al. Metal-supported solid oxide fuel cell operated at 400-600 ℃. Journal of Power Sources, 2007,167(2):336-339.
DOI URL |
[4] |
ZHANG S L, YU H X, LI C X , et al. Thermally sprayed high performance porous metal-supported solid oxide fuel cells with nanostructured La0.6Sr0.4Co0.2Fe0.8O3 cathodes. Journal of Materials Chemistry A, 2016,4(19):7461-7468.
DOI URL |
[5] | ZHOU Y C, SONG S D, HAN M F . Development of metal- supported SOFC. Engineering Sciences, 2013,15(2):28-32. |
[6] |
MORI M, YAMAMOTO T, ITOH H . et al. Thermal expansion of nickel-zirconia anodes in solid oxide fuel cells during fabrication and operation. Journal of Electrochemical Society, 1998,145(4):1374-1381.
DOI URL |
[7] |
WANG Y, JIANG W, LUO Y , et al. Evolution of thermal stress and failure probability during reduction and reoxidation of solid oxide fuel cell. Journal of Power Sources, 2017,371:65-76.
DOI URL |
[8] |
XIE J M, WANG F H . Thermal stress analysis of solid oxide fuel cell with anode functional layer. Journal of Inorganic Materials, 2017,32(4):400-406.
DOI URL |
[9] |
SAIED M, AHMED K, AHMED M . et al. Investigations of solid oxide fuel cells with functionally graded electrodes for high performance and safe thermal stress. International Journal of Hydrogen Energy, 2017,42(24):15887-15902.
DOI URL |
[10] |
CELIK S, IBRAHIMOGLU B, MAT M , et al. Micro level two dimensional stress and thermal analysis anode/electrolyte interface of a solid oxide fuel cell. International Journal of Hydrogen Energy. 2015,40(24):7895-7902.
DOI URL |
[11] |
CHARLAS B, FRANDSEN H L, BRODERSEN K , et al. Residual stresses and strength of multilayer tape cast solid oxide fuel and electrolysis half-cells. Journal of Power Sources, 2015,288:243-252.
DOI URL |
[12] |
VILLANOVA J, SICARDY O, FORTUNIER R , et al. Determination of global and local residual stresses in SOFC by X-ray diffraction. Nuclear Instruments and Methods in Physics Research B, 2010,268(3/4):282-286.
DOI URL |
[13] |
MALZBENDER J, STEINBRECH RW, SINGHEISER L . A review of advanced techniques for characterising SOFC behaviour. Fuel Cells, 2009,9(6):785-793.
DOI URL |
[14] |
ZENG S M, PARBEY J, YU G S , et al. Thermal stress analysis of sulfur deactivated solid oxide fuel cells. Journal of Power Sources, 2018,379:134-143.
DOI URL |
[15] |
WANG K P, HUANG Y Y, CHANDRA A , et al. Interfacial shear stress, peeling stress, and die cracking stress in trilayer electronic assemblies. IEEE Transactions on Components and Packaging Technologies, 2000,23(2):309-316.
DOI URL |
[16] |
LIU L, KIM G Y, CHANDRA A . Modeling of thermal stresses and lifetime prediction of planar solid oxide fuel cell under thermal cycling conditions. Journal of Power Sources, 2010,195(8):2310-2318.
DOI URL |
[17] |
CLAGUE R, MARQUIS A J, BRANDON N P . Finite element and analytical stress analysis of a solid oxide fuel cell. Journal of Power Sources, 2012,210:224-232.
DOI URL |
[18] |
DAMM D L, FEDOROY A G . Reduced-order transient thermal modeling for SOFC heating and cooling. Journal of Power Sources, 2006,159(2):956-967.
DOI URL |
[19] |
HAJIMOLANA S A, TONEKABONIMAOGHADAM S M, HUSSAIN M A , et al. Thermal stress management of a solid oxide fuel cell using neural network predictive control. Energy, 2013,62(30):320-329.
DOI URL |
[20] |
CHIANG L K, LIU H C, SHIU Y H , et al. Thermo-electrochemical and thermal stress analysis for an anode-supported SOFC cell. Renew Energy, 2008,33(12):2580-2588.
DOI URL |
[21] |
VAIDYA S, KIM J H . Finite element thermal stress analysis of solid oxide fuel cell cathode microstructures. Journal of Power Sources, 2013,225:269-276.
DOI URL |
[22] |
ZENG S, XU M, PARBEY J , et al. Thermal stress analysis of a planar anode-supported solid oxide fuel cell: effects of anode porosity. Internal Journal of Hydrogen Energy, 2017,42:20239-20248.
DOI URL |
[23] |
LI K, WANG X, JIA L C , et al. High performance Ni-Fe alloy support SOFCs fabricated by low cost tape casting-screen printing- cofiring process. International Journal of Hydrogen Energy, 2014,39(34):19747-19752.
DOI URL |
[24] |
JU Y W, ETO H, INAGAKI T , et al. Preparation of Ni-Fe bimetallic porous anode support for solid oxide fuel cells using LaGaO3 based electrolyte film with high power density. Journal of Power Sources, 2010,195(19):6294-6300.
DOI URL |
[25] | ZHU T L, DU X J, BU Y F , et al. Validation and electrochemical characterization of LSCF cathode deposition on metal supported SOFC. Journal of the Electrochemical Society, 2017,164(13):1489-1494. |
[26] | KONG Y, HUA B, PU J , et al. A cost-effective process for fabrication of metal-supported solid oxide fuel cells. International Journal of Hydrogen Energy, 2010,35(10):4592-4596. |
[27] |
WANG X, LI K, JIA L C , et al. Porous Ni-Fe alloys as anode support for intermediate temperature solid oxide fuel cells: I. Fabrication, redox and thermal behaviors. Journal of Power Sources, 2015,277:474-479.
DOI URL |
[28] |
LI K, JIA L C, WANG X , et al. Methane on-cell reforming in nickel-iron alloy supported solid oxide fuel cells. Journal of Power Sources, 2015,284:446-451.
DOI URL |
[29] | LI K, JIA L C, WANG X , et al. Enhanced methane steam reforming activity and electrochemical performance of Ni0.9Fe0.1- supported solid oxide fuel cells with infiltrated Ni-TiO2 particles. Scientific Reports, 2016, 6: 35981-1-9. |
[30] |
MENG L, WANG F Z, WANG A , et al. High performance La0.8Sr0.2MnO3-coated Ba0.5Sr0.5Co0.8Fe0.2O3 cathode prepared by a novel solid-solution method for intermediate temperature solid oxide fuel cells. Chinese Journal of Catalysis, 2014,35(1):38-42.
DOI URL |
[31] |
MOON H, KIM S, HYUN S , et al. Development of IT-SOFC unit cells with anode-supported thin electrolytes via tape casting and co-firing. International Journal of Hydrogen Energy, 2008,33(6):1758-1768.
DOI URL |
[32] |
MOLLA TT BJØRK R, OLEVSKY E, , et al. Multi-scale modeling of shape distortions during sintering of bilayers. Computational Materials Science, 2014,88(20):28-36.
DOI URL |
[1] | WANG Shi-Yang, FU Yu-Dong, CHEN Lei, WANG Yu-Jin. Fabrication and Mechanical Property of W-Y2O3 Composites and Graded material [J]. Journal of Inorganic Materials, 2018, 33(6): 596-602. |
[2] | XIE Jia-Miao, WANG Feng-Hui. Thermal Stress Analysis of Solid Oxide Fuel Cell with Anode Functional Layer [J]. Journal of Inorganic Materials, 2017, 32(4): 400-406. |
[3] | DING Dong-Zhou, LI Huan-Ying, QIN Lai-Shun, LU Sheng, PAN Shang-Ke, REN Guo-Hao. Research on the Defects in LuxY1-xAlO3:Ce Crystals [J]. Journal of Inorganic Materials, 2010, 25(10): 1020-1024. |
[4] |
CHEN Xian,YANG Jie,PU Jian,LI Jian.
Finite Element Analysis of Thermal Stresses in Planar SOFCs [J]. Journal of Inorganic Materials, 2007, 22(2): 339-343. |
[5] | YI Fa-Jun,MENG Song-He,HAN Jie-Cai,DU Shan-Yi. Mechanical Behavior of Carbon Felt-Carbon Composites under Ultra-High Temperature [J]. Journal of Inorganic Materials, 2001, 16(6): 1229-1234. |
[6] | WANG Yong-Guo,AI Xing,LI Zhao-Qian,DENG Jian-Xin,ZHAO Jun. Thermal Stress Analysis of Newly Functionally Graded Ceramic Cutting Tools [J]. Journal of Inorganic Materials, 2001, 16(5): 999-1003. |
[7] | CHU Cheng-Lin,YIN Zhong-Da,ZHU Jing-Chuan,WANG Shi-Dong. Microstructure and Thermal Stress Relaxation Characteristics of Hydroxyapatite-Ti Functionally Graded Biomaterial [J]. Journal of Inorganic Materials, 1999, 14(5): 775-782. |
[8] | WANG Yin-Zhen,SUN Yong-Xing,YAN Jun-Hui,ZHENG Xiu-Lin,YAN Guo-Chao. Thermal Shock Failure Life Calculation of TBCs [J]. Journal of Inorganic Materials, 1999, 14(1): 138-142. |
[9] | CHANG Cheng-Kang,DING Chuan-Xian. Study on Zirconia Based Hydroxylapatite Graded Coating Material [J]. Journal of Inorganic Materials, 1998, 13(1): 71-77. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||