Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (6): 605-610.DOI: 10.15541/jim20180352
Previous Articles Next Articles
Xing-Peng LIU,Bin PENG(),Wan-Li ZHANG,Jun ZHU
Received:
2018-08-13
Revised:
2018-10-12
Published:
2019-06-20
Online:
2019-05-23
Supported by:
CLC Number:
Xing-Peng LIU, Bin PENG, Wan-Li ZHANG, Jun ZHU. Al2O3 Coating Layer on the High Temperature Conductive Stability of Pt/ZnO/Al2O3 Film Electrode[J]. Journal of Inorganic Materials, 2019, 34(6): 605-610.
Fig. 1 (a) Cross-sectional TEM images of the Al2O3/Pt/ZnO/Al2O3 film electrodes with 160 nm Al2O3 layer (b) the corresponding enlarged cross-sectional TEM image
Fig. 2 Changes of resistances for the Al2O3/Pt/ZnO/Al2O3 film electrodes coated with Al2O3 layers of different thicknesses as functions of (a) temperature and (b) dwell time at 1000 ℃
Fig. 3 SEM surface topographies of Al2O3/Pt/ZnO/Al2O3 film electrodes coated with (a) 200, (b) 160, (c) 120, (d) 80, (e) 40 nm, and (f) without Al2O3 layers after annealing at 1000 ℃ for 1 h
Fig. 5 XRD results of the Al2O3 /Pt/ZnO/Al2O3 film electrodes coated with Al2O3 coating layers of different thicknesses after annealing at 1000 ℃ for 1 h (a) Rocking curves of Pt (111) peaks; (b) 2θ-θ scans of the Pt (111) peaks;(c) Extracted FWHM from Fig.(b); (d) Pt grains size in the direction perpendicular to the Pt (111) plane
[1] |
ALEEE C, VULPESCU L, COUSSEAU P , et al. Microsystem for high-temperature gas phase reactions. Meas. Control., 2000,33(9):265-268.
DOI URL |
[2] |
ARANA L R, SCHAEVITZ S B, FRANZ A J , et al. A microfabricated suspended-tube chemical reactor for thermally efficient fuel processing. Micr. Syst., 2003,12(5):600-612.
DOI URL |
[3] | PATEL S V, DIBATTISTA M, GLAND J L , et al. Survivability of a silicon-based microelectronic gas-detector structure for high-temperature flow applications. Sens. Actu. B, 1996,37(1/2):27-35. |
[4] |
BRIAND D, BEAUDOIN F, COURBAT J , et al. Failure analysis of micro-heating elements suspended on thin membranes. Micr.Reli, 2005,45(9/10/11):1786-1789.
DOI URL |
[5] |
COURBAT J, BRIAND D, DE ROOIJ N F , et al. Reliability improvement of suspended platinum-based micro-heating elements. Sens. Actu.A, 2008,142(1):284-291.
DOI URL |
[6] |
ESCH H, HUYBERECHTS G, MERTENS R , et al. The stability of Pt heater and temperature sensing elements for silicon integrated tin oxide gas sensors. Sens. Actu.B, 2000,65(1/2/3):190-192.
DOI URL |
[7] |
KANG A, ZHANG C R, JIA X J , et al. SAW-RFID enabled temperature sensor. Sens. Actu. A Phys., 2013,201:105-113.
DOI URL |
[8] |
RODRIGUEZ-MADRID J G, IRIARTE G F, WILLIAMSB O A , et al. High precision pressure sensors based on SAW devices in the GHz range. Sens. Actu.A, 2013,189:364-369.
DOI URL |
[9] |
SHU L, PENG B, YANG Z B , et al. High-temperature SAW wireless strain sensor with langasite. Sensors, 2015,15(11):28531-28542.
DOI URL |
[10] |
MROSK J W, BERGER L, ETTL C , et al. Materials issues of SAW sensors for high-temperature applications. IEEE Trans. Ind.Electron, 2001,48(2):258-264.
DOI URL |
[11] | BAO S M, KE Y B, ZHENG Y Q , et al. A method for achieving monotonic frequency-temperature response for langasite surface- acoustic-wave high-temperature sensor. Jpn. J. Appl. Phys., 2016, 55(2): 027301-1-5. |
[12] |
THOMPSON C V . Solid-state dewetting of thin films. Annu. Rev. Mater. Res., 2012,42:399-434.
DOI URL |
[13] | SAKHAROV S, ZABELIN A, MEDVEDEV A , et al. Technological Process and Resonator Design Optimization of Ir/LGS High Temperature SAW Devices. IEEE International Ultrasonics Symposium Proceedings, 2014: 1632-1635. |
[14] | AUBERT T, ELMAZRIA O, BARDONG J , et al. Iridium Interdigital Transducers for Ultra-high-temperature SAW Devices. IEEE International Ultrasonics Symposium Proceedings, 2011: 2065-2068 |
[15] |
TAGUETT A, AUBERT T, LOMELLO M , et al. Ir-Rh thin films as high-temperature electrodes for surface acousticwave sensor applications. Sens. Actu.A, 2016,243:35-42.
DOI URL |
[16] |
RANE G K, SEIFERT M, MENZEL S , et al. Tungsten as a chemically-stable electrode material on ga-containing piezoelectric substrates langasite and catangasite for high-temperature SAW devices. Materials, 2016,9(2):101.
DOI URL |
[17] |
RANE G K, MENZEL S, SEIFERT M , et al. Tungsten/ molybdenum thin films for application as interdigital transducers on high temperature stable piezoelectric substrates La3Ga5SiO14 and Ca3TaGa3Si2O14. Materials Science and Engineering B, 2015,202:31-38.
DOI URL |
[18] | MOULZOL S C, FRANKEL D J, PEREIRA DA CUNHA M , et al. Electrically conductive Pt-Rh/ZrO2 and Pt-Rh/HfO2 nanocomposite electrodes for high temperature harsh environment sensors. Proc of.SPIE, 2013,8763:87630F. |
[19] | AUBERT T, ELMAZRIA O, ASSOUAR B , et al. Surface acoustic wave devices based on AlN/sapphire structure for high temperature applications. Appl. Phys. Lett., 2010, 96(20): 203503-1-3. |
[20] |
AUBERT T, ELMAZRIA O, ASSOUAR B , et al. Behavior of platinum/tantalum as interdigital transducers for SAW devices in high-temperature environments. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2011,58(3):603-610.
DOI URL |
[21] |
AUBERT T, ELMAZRIA O, ASSOUAR B , et al. Investigations on AlN/Sapphire piezoelectric bilayer structure for high-temperature SAW applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012,59(5):999-1005.
DOI URL |
[22] | ELMAZRIA O, AUBERT T . Wireless SAW sensor for high temperature applications: material point of view. Proc. of SPIE, 2011, 8066: 806602-1-10. |
[23] |
LIU X P, PENG B, ZHANG W L , et al. Novel AlN/Pt/ZnO electrode for high temperature SAW sensors. Materials, 2017,10(1):69.
DOI URL |
[24] |
LIU X P, PENG B, ZHANG W L , et al. Improvement of high-temperature stability of Al2O3/Pt/ZnO/Al2O3 film electrode for SAW devices by using Al2O3 barrier layer. Materials, 2017,10(12):1377.
DOI URL |
[25] |
KHODAIR Z, KAMIL A A, ABDALAAH Y K . Effect of annealing on structural and optical properties of Ni(1-x)MnxO nanostructures thin films. Physica B: Condensed Matter, 2016,503:55-63.
DOI URL |
[1] | CHEN Qiang, BAI Shuxin, YE Yicong. Highly Thermal Conductive Silicon Carbide Ceramics Matrix Composites for Thermal Management: a Review [J]. Journal of Inorganic Materials, 2023, 38(6): 634-646. |
[2] | ZHANG Shuo, FU Qiangang, ZHANG Pei, FEI Jie, LI Wei. Influence of High Temperature Treatment of C/C Porous Preform on Friction and Wear Behavior of C/C-SiC Composites [J]. Journal of Inorganic Materials, 2023, 38(5): 561-568. |
[3] | YU Ruixian, WANG Guodong, WANG Shouzhi, HU Xiaobo, XU Xiangang, ZHANG Lei. Effect of High-temperature Annealing on AlN Crystal Grown by PVT Method [J]. Journal of Inorganic Materials, 2023, 38(3): 343-349. |
[4] | PAN Yangyang, LIANG Bo, HONG Du, QI Zhixiang, NIU Yaran, ZHENG Xuebin. High Temperature Long-term Service Performance of TiAlCrY/YSZ Coating on TiAl Alloy [J]. Journal of Inorganic Materials, 2023, 38(1): 105-112. |
[5] | FU Shi, YANG Zengchao, LI Honghua, WANG Liang, LI Jiangtao. Mechanical Properties and Thermal Conductivity of Si3N4 Ceramics with Composite Sintering Additives [J]. Journal of Inorganic Materials, 2022, 37(9): 947-953. |
[6] | HU Jiajun, WANG Kai, HOU Xinguang, YANG Ting, XIA Hongyan. Boron Phosphide with High Thermal Conductivity: Synthesis by Molten Salt Method and Thermal Management Performance [J]. Journal of Inorganic Materials, 2022, 37(9): 933-940. |
[7] | WANG Pengjiang, KANG Huijun, YANG Xiong, LIU Ying, CHENG Cheng, WANG Tongmin. Inhibition of Lattice Thermal Conductivity of ZrNiSn-based Half-Heusler Thermoelectric Materials by Entropy Adjustment [J]. Journal of Inorganic Materials, 2022, 37(7): 717-723. |
[8] | CHENG Cheng, LI Jianbo, TIAN Zhen, WANG Pengjiang, KANG Huijun, WANG Tongmin. Thermoelectric Property of In2O3/InNbO4 Composites [J]. Journal of Inorganic Materials, 2022, 37(7): 724-730. |
[9] | JIANG Yiyi, SHEN Min, SONG Banxia, LI Nan, DING Xianghuan, GUO Leyi, MA Guoqiang. Effect of Dual-functional Electrolyte Additive on High Temperature and High Voltage Performance of Li-ion Battery [J]. Journal of Inorganic Materials, 2022, 37(7): 710-716. |
[10] | WANG Xingang, YANG Qingqing, LIN Genlian, GAO Wei, QIN Fulin, LI Rongzhen, KANG Zhuang, WANG Xiaofei, JIANG Danyu, YAN Jina. High Temperature Tensile Property of Domestic 550-grade Continuous Alumina Ceramic Fiber [J]. Journal of Inorganic Materials, 2022, 37(6): 629-635. |
[11] | DING Jianxiang, ZHANG Kaige, LIU Dongming, ZHENG Wei, ZHANG Peigen, SUN Zhengming. Ag-based Electrical Contact Material Reinforced by Ti3AlC2 Ceramic and Its Derivative Ti3C2Tx [J]. Journal of Inorganic Materials, 2022, 37(5): 567-573. |
[12] | RUAN Jing, YANG Jinshan, YAN Jingyi, YOU Xiao, WANG Mengmeng, HU Jianbao, ZHANG Xiangyu, DING Yusheng, DONG Shaoming. Porous SiC Ceramic Matrix Composite Reinforced by SiC Nanowires with High Strength and Low Thermal Conductivity [J]. Journal of Inorganic Materials, 2022, 37(4): 459-466. |
[13] | LOU Xunuo, DENG Houquan, LI Shuang, ZHANG Qingtang, XIONG Wenjie, TANG Guodong. Thermal and Electrcial Transport Properities of Ge Doped MnTe Thermoelectrics [J]. Journal of Inorganic Materials, 2022, 37(2): 209-214. |
[14] | LI Wenkai, ZHAO Ning, BI Zhijie, GUO Xiangxin. Na3Zr2Si2PO12 Ceramic Electrolytes for Na-ion Battery: Preparation Using Spray-drying Method and Its Property [J]. Journal of Inorganic Materials, 2022, 37(2): 189-196. |
[15] | ZHANG Keyi, ZHENG Qi, WANG Lianjun, JIANG Wan. Preparation and Characterization of Ag2Se-based Ink Used for Inkjet Printing [J]. Journal of Inorganic Materials, 2022, 37(10): 1109-1115. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||