Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (4): 455-460.DOI: 10.15541/jim20180490
• RESEARCH LETTERS • Previous Articles
Yuan WANG1,2,Jie LIN1,2,Zheng CHANG1,Tian-Quan LIN1,Meng QIAN1,2,Fu-Qiang HUANG1,3()
Received:
2018-10-16
Published:
2019-04-20
Online:
2019-04-15
Supported by:
CLC Number:
Yuan WANG, Jie LIN, Zheng CHANG, Tian-Quan LIN, Meng QIAN, Fu-Qiang HUANG. Electrodeposited Nanoflakes of RuOx·nH2O on Three-dimensional Graphene for Flexible Supercapacitors[J]. Journal of Inorganic Materials, 2019, 34(4): 455-460.
Fig. 2 FE-SEM images of (a) 3D-GR and (b) RuOx·nH2O, (c-d) HRTEM images of RuOx·nH2O/3D-GR, (e) TEM image of RuOx·nH2O, and (f) corresponding EDS elemental mapping of (e)
Fig. 3 (a) CV curves of RuOx·nH2O/3D-GR at different scan rates with current being normalized by scan rates and the area of the electrode, (b) areal capacitance calculated from CV curves vs. scan rates, (c) GCD curves of RuOx?nH2O/3D-GR at different current densities, and (d) areal capacitance calculated from GCD curves vs. current densities
Fig. 4 (a) Different cycles of CV curves at a scan rate of 10 mV?s-1, (b) calculated capacitance vs. the cycles number of CV test, determination of (c) Ctotal and (d) Couter of RuOx·nH2O/3D-GR
Fig. 5 Electrochemical performance of all-solid-state flexible supercapacitors (a) CV curves of RuOx·nH2O/3D-GR at different scan rates with current being normalized by voltage scan rate ν and the total area of the two electrodes; (b) Calculated capacitance from CV curves vs. different scan rates with inset showing the glow of red-light emitting diode (2.4 V) powered by three devices in series; (c) GCD curves of RuOx·nH2O /3D-GR at different current densities; (d) Areal capacitance calculated from GCD curves vs. different current densities with inset showing display of the flexible device
[1] | FERRIS A, GARBARINO S, GUAY D , et al. 3D RuO2 microsupercapacitors with remarkable areal energy. Advanced Materials, 2015,27(42):6625-6629. |
[2] | WANG Q, WANG X, LIU B , et al. NiCo2O4 nanowire arrays supported on Ni foam for high-performance flexible all-solid-state supercapacitors. Journal of Materials Chemistry A, 2013,1(7):2468-2473. |
[3] | WALSH E D, HAN X, LACEY S D , et al. Dry-processed, binder- free holey graphene electrodes for supercapacitors with ultrahigh areal loadings. ACS Applied Materials & Interfaces, 2016,8(43):29478-29485. |
[4] | XIAO K, LI J W, CHEN G F , et al. Amorphous MnO2 supported on 3D-Ni nanodendrites for large areal capacitance supercapacitors. Electrochimica Acta, 2014,149:341-348. |
[5] | ZHOU H, HAN G, XIAO Y , et al. Facile preparation of polypyrrole/ graphene oxide nanocomposites with large areal capacitance using electrochemical codeposition for supercapacitors. Journal of Power Sources, 2014,263:259-267. |
[6] | QIN T, WAN Z, WANG Z , et al. 3D flexible O/N Co-doped graphene foams for supercapacitor electrodes with high volumetric and areal capacitances. Journal of Power Sources, 2016,336:455-464. |
[7] | YOO J J, BALAKRISHNAN K, HUANG J S , et al. Ultrathin planar graphene supercapacitors. Nano Letters, 2011,11(4):1423-1427. |
[8] | HUANG P, HEON M, PECH D , et al. Micro-supercapacitors from carbide derived carbon (CDC) films on silicon chips. Journal of Power Sources, 2013,225:240-244. |
[9] | WANG G P, ZHANG L, ZHANG J J . A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev., 2012,41(2):797-828. |
[10] | ICAZA J C, GUDURU R K . Electrochemical characterization of nanocrystalline RuO2 with aqueous multivalent (Be2+ and Al3+) sulfate electrolytes for asymmetric supercapacitors. Journal of Alloys and Compounds, 2018,735:735-740. |
[11] | SHIH Y T, LEE K Y, HUANG Y S . Characterization of iridium dioxide-carbon nanotube nanocomposites grown onto graphene for supercapacitor. Journal of Alloys and Compounds, 2015,619:131-137. |
[12] | WANG C F, LU S, CHEN H L , et al. One-pot synthesis and application in asymmetric supercapacitors of Mn3O4@RGO nanocomposites. Journal of Inorganic Materials, 2016,31(6):581-587. |
[13] | ZHANG L J, GAO B, ZHANG X G . Pyrolysis preparation of nickel oxide and its electrochemical capacitance. Journal of Inorganic Materials, 2011,26(4):398-402. |
[14] | DENG W, JI X, CHEN Q , et al. Electrochemical capacitors utilising transition metal oxides: an update of recent developments. RSC Advances, 2011,1(7):1171. |
[15] | YAN S, QU P, WANG H , et al. Synthesis of Ru/multiwalled carbon nanotubes by microemulsion for electrochemical supercapacitor. Materials Research Bulletin, 2008,43(10):2818-2824. |
[16] | YANG F, YAO J, LIU F , et al. Ni-Co oxides nanowire arrays grown on ordered TiO2 nanotubes with high performance in supercapacitors. Journal of Materials Chemistry A, 2013,1(3):594-601. |
[17] | YE J S, CUI H F, LIU X , et al. Preparation and characterization of aligned carbon nanotube-ruthenium oxide nanocomposites for supercapacitors. Small, 2005,1(5):560-565. |
[18] | QI X Y, ZHOU Q F, CUI M W , et al. Capacitive performance of Zn-Ni hydroxide nano-sheet arrays on nickel foams via a mild chemical-bath deposition process. Journal of Inorganic Materials, 2017,32(4):372-378. |
[19] | WU M S, YANG C H, WANG M J . Morphological and structural studies of nanoporous nickel oxide films fabricated by anodic electrochemical deposition techniques. Electrochimica Acta, 2008,54(2):155-161. |
[20] | YANG L, CHENG S, DING Y , et al. Hierarchical network architectures of carbon fiber paper supported cobalt oxide nanonet for high-capacity pseudocapacitors. Nano Letters, 2012,12(1):321-325. |
[21] | SUN H, LIN M, LIANG J , et al. Three-dimensional holey- graphene/niobia composite architectures for ultrahigh-rate energy storage. Science, 2017,356(6338):599-604. |
[22] | CHEN Y, ZHANG X, ZHANG D , et al. One-pot hydrothermal synthesis of ruthenium oxide nanodots on reduced graphene oxide sheets for supercapacitors. Journal of Alloys and Compounds, 2012,511(1):251-256. |
[23] | WANG Z, MA C, WANG H , et al. Facilely synthesized Fe2O3- graphene nanocomposite as novel electrode materials for supercapacitors with high performance. Journal of Alloys and Compounds, 2013,552:486-491. |
[24] | XU J, DING W, ZHAO W , et al. In situ growth enabling ideal graphene encapsulation upon mesocrystalline MTiO3 (M = Ni, Co, Fe) nanorods for stable lithium storage. ACS Energy Letters, 2017,2(3):659-663. |
[25] | ARDIZZONE S, FREGONARA G, TRASATTI S . Inner and outer active surface of RuO2 electrodes. Electrochimica Acta, 1990,35(1):263-267. |
[26] | LIN T, CHEN I.W, LIU F , et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science, 2015,350(6267):1508-1513. |
[27] | OPPEDISANO D, JONES L, JUNK T , et al. Ruthenium electrodeposition from aqueous solution at high cathodic overpotential. Journal of the Electrochemical Society, 2014,161(10):D489-D494. |
[28] | WANG W, GUO S, LEE I , et al. Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors. Sci. Rep., 2014, 4: 4452-1-9. |
[1] | FU Ya-Kang,WENG Jie,LIU Yao-Wen,ZHANG Ke-Hong. hBMP-2 Contained Composite Coatings on Titanium Mesh Surface: Preparation and hBMP-2 Release [J]. Journal of Inorganic Materials, 2020, 35(2): 173-178. |
[2] | ZHANG Ya-Ping, DING Wen-Ming, ZHU Hai-Feng, HUANG Cheng-Xing, YU Lian-Qing, WANG Yong-Qiang, LI Zhe, XU Fei. Photoelectrochemical Properties of MoSe2 Modified TiO2 Nanotube Arrays [J]. Journal of Inorganic Materials, 2019, 34(8): 797-802. |
[3] | ZHAO Shi-Huai, YANG Zi-Bo, ZHAO Xiao-Ming, XU Wen-Wen, WEN Xin, ZHANG Qing-Yin. Green Preparation and Supercapacitive Performance of NiCo2S4@ACF Heterogeneous Electrode Materials [J]. Journal of Inorganic Materials, 2019, 34(2): 130-136. |
[4] | WANG Jia-Wei, YANG Yan-Qing, GAO Ze-Yu, LIANG Ying, DENG Chuan, ZHANG Wei-Ke. Electrochemical Performance of Bi2WO6/CNOs Nanocomposites Synthesized via a Hydrothermal Method [J]. Journal of Inorganic Materials, 2018, 33(11): 1208-1212. |
[5] | ZHENG Xuan, GONG Chun-Li, LIU Hai, WANG Guang-Jin, CHENG Fan, ZHENG Gen-Wen, WEN Sheng, XIONG Chuan-Xi. Preparation of Phosphomolybdic Acid Coated Carbon Nanotubes and Its Supercapacitive Properties [J]. Journal of Inorganic Materials, 2017, 32(2): 127-134. |
[6] | ZHOU Hui, HAN Man-Gui, TANG Zhong-Kai, WU Yan-Hui. Fabrication and Magnetic Properties of N-type Porous Silicon/Nickel Microtubes Composite [J]. Journal of Inorganic Materials, 2016, 31(8): 855-859. |
[7] | WANG Chao-Fei, LU Shuang, CHEN Hui-Long, GONG Fei-Long, GONG Yu-Yin, LI Feng. One-pot Synthesis and Application in Asymmetric Supercapacitors of Mn3O4@RGO Nanocomposites [J]. Journal of Inorganic Materials, 2016, 31(6): 581-587. |
[8] | YU Jian-Hua, XU Li-Li, ZHANG Wu-Shou, ZHU Qian-Qian, WANG Xiao-Xia, DONG Li-Feng. Enhanced Capacitive Properties of All-solid-state Symmetric Graphene Supercapacitors by Incorporating Nitrogen-doping and SnO2 Nanoparticles [J]. Journal of Inorganic Materials, 2015, 30(6): 662-666. |
[9] | FENG Ya-Qiang, TANG Fu-Ling, LANG Jun-Wei, LIU Wen-Wen, YAN Xing-Bin. Facile Approach to Preparation of Nitrogen-doped Graphene and Its Supercapacitive Performance [J]. Journal of Inorganic Materials, 2013, 28(06): 677-682. |
[10] | WEI Hao-Ming, CHEN Ling, GONG Hai-Bo, CAO Bing-Qiang. Influence of ZnO Nanorods Morphology on the Photovoltaic Properties of ZnO/Cu2O Heterostructural Solar Cells [J]. Journal of Inorganic Materials, 2012, 27(8): 833-837. |
[11] | WANG Ying-Bo,LU Xiong*, FENG Bo,QU Shu-Xin, WENG Jie. Calcium Phosphate/ Gelatin Composite Coatings on Titanium Surfaces by ElectrochemicalDepositon [J]. Journal of Inorganic Materials, 2011, 26(1): 61-67. |
[12] | CHEN Fang,LIANG Hai-Chao,LI Ren-Gui,LIU Li,DENG Zheng-Hua. Progress in Research on Li4Ti5O12 as Anode for Electrochemical Devices [J]. Journal of Inorganic Materials, 2005, 20(3): 537-544. |
[13] | JIANG Qi,QU Mei-Zhen,ZHANG Bo-Lan,YU Zuo-Long. Progress of Research on Electrode Materials for Electrochemical Supercapacitors [J]. Journal of Inorganic Materials, 2002, 17(4): 649-656. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||