Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (4): 425-432.DOI: 10.15541/jim20180299
Special Issue: 光催化材料与技术; 优秀作者论文集锦; 2019~2020年度优秀作者作品欣赏:环境材料
Previous Articles Next Articles
Yang LIU1,Shan YU1(),Kai-Wen ZHENG1,Wei-Wei CHEN1,Xing-An DONG2,Fan DONG2,Ying ZHOU1()
Received:
2018-07-02
Revised:
2018-10-08
Published:
2019-04-20
Online:
2019-04-15
Supported by:
CLC Number:
Yang LIU, Shan YU, Kai-Wen ZHENG, Wei-Wei CHEN, Xing-An DONG, Fan DONG, Ying ZHOU. NO Photo-oxidation and In-situ DRIFTS Studies on N-doped Bi2O2CO3/CdSe Quantum Dot Composite[J]. Journal of Inorganic Materials, 2019, 34(4): 425-432.
Fig. 2 Photocatalytic removal ratio of NO (a) and generation of NO2 (b) in the presence of N-BOC and N-BOC/CdSe QDs under visible light irradiation (λ>420 nm), and photocatalytic recycling tests on N-BOC/CdSe QDs (1%) under visible light (c) and UV-Visible light (d) irradiation
Fig. 6 UV-Vis DRS of N-BOC and N-BOC/CdSe QDs Insets are the absorption spectrum of CdSe QDs dispersed in water (up) and enlarged spectra of N-BOC/CdSe QDs composite (down)
Species | Redox potential (NHE) | |
---|---|---|
Potential/eV | Ref. | |
O2/?O2- | -0.28 | [30] |
NO/NO2 | 0.94 | [29] |
NO/NO3- | 1.03 | [29] |
Table 1 Redox potentials of different active species
Species | Redox potential (NHE) | |
---|---|---|
Potential/eV | Ref. | |
O2/?O2- | -0.28 | [30] |
NO/NO2 | 0.94 | [29] |
NO/NO3- | 1.03 | [29] |
Wavenumber/cm-1 | Assignment | Ref. |
---|---|---|
935 | Bidentate nitrite | [31] |
949, 978 | Monodentate nitrate | [32-35] |
1002 | Bridge nitrate | [32-35] |
1024 | Bidentate/monodentate nitrate | [8, 32-35] |
1092, 1134 | NO | [31] |
1180 | NO- | [8,18] |
1120 | Bidentate nitrite | [18, 31] |
1262 | Monodentate nitrate | [18, 31] |
Table 2 Assignments of the IR bands observed during NO adsorption and photocatalysis over N-BOC/CdSe QDs
Wavenumber/cm-1 | Assignment | Ref. |
---|---|---|
935 | Bidentate nitrite | [31] |
949, 978 | Monodentate nitrate | [32-35] |
1002 | Bridge nitrate | [32-35] |
1024 | Bidentate/monodentate nitrate | [8, 32-35] |
1092, 1134 | NO | [31] |
1180 | NO- | [8,18] |
1120 | Bidentate nitrite | [18, 31] |
1262 | Monodentate nitrate | [18, 31] |
[1] | HOFFMANN M R, MARTIN S T, CHOI W Y , et al. Environmetal applications of semiconductor photocatalysis. Chemical Reviews, 1995,95(1):69-96. |
[2] | ZHOU YING, LI WEI, ZHANG QIAN , et al. Non-noble metal plasmonic photocatalysis in semimetal bismuth films for photocatalytic NO oxidation. Physical Chemistry Chemical Physics, 2017,19(37):25610-25616. |
[3] | OLSSON L, PERSSON H, FRIDELL E , et al. A kinetic study of NO oxidation and NOx storage on Pt/Al2O3 and Pt/BaO/Al2O3. Journal of Physical Chemisty B, 2001,105(29):6895-6906. |
[4] | CAI SHI-YI, YU SHAN, WAN WEN-CHAO , et al. Self-template synthesis of ATiO3 (A=Ba, Pb and Sr) perovskites for photocatalytic removal of NO. RSC Advance, 2017,7(44):27397-27404. |
[5] | OBRUBIA J A, PEREDA-AYO B, DE-LA-TORRE U , et al. Key factors in Sr-doped LaBO3 (B=Co or Mn) perovskites for NO oxidation in efficient diesel exhaust purification. Applied Catalysis B: Environmental, 2017,213(15):198-210. |
[6] | LUO JIAN-MING, DONG GUO-HUI, ZHU YUN-QING , et al. Switching of semiconducting behavior from n-type to p-type induced high photocatalytic NO removal activity in g-C3N4. Applied Catalysis B: Environmental, 2017,214(5):46-56. |
[7] | WANG ZHEN-YU, HUANG YU, HO WEI-KEI , et al. Fabrication of Bi2O2CO3/g-C3N4 heterojunctions for efficiently photocatalytic NO in air removal: in-situ self-sacrificial synthesis characterizations and mechanistic study. Applied Catalysis B: Environmental, 2016,199(15):123-133. |
[8] | ZHANG GUO-YING, SHEN XING-QI, YANG LI-MIN , et al. RGO/Bi2O2CO3: one-step synthesis and photocatalytic property. Journal of Inorganic Materials, 2017,32(11):1202-1208. |
[9] | WANG WEN-ZHONG, SHANG MENG, YIN WEN-ZONG , et al. Recent progress on the bismuth containing complex oxide photocatalysts. Journal of Inorganic Materials, 2012,30(10):1009-1017. |
[10] | LIU JIA-QIN, WU YU-CHENG . Recent advances in the high performance BiOX(X=Cl, Br, I) based photo-catalysts. Journal of Inorganic Materials, 2015,27(1):11-18. |
[11] | CHEN LANG, HUANG RUI, YIN SHUNG-FENG , et al. Flower-like Bi2O2CO3: facile synthesis and their photocatalytic application in treatment of dye-containing wastewater. Chemical Engineering Journal, 2012, 193-194(15):123-130. |
[12] | MADHUSUDAN P, ZHANG JUN, CHENG BEI , et al. Photocatalytic degradation of organic dyes with hierarchical Bi2O2CO3 microstructures under visible-light. CrysEngComm, 2013,15(2):231-240. |
[13] | ZHOU YING, ZHAO ZI-YAN, WANG FANG , et al. Facile synthesis of surface N-doped Bi2O2CO3: origin of visible light photocatalytic activity and in situ DRIFTS studies. Journal of Hazardous Material, 2016,307(15):163-172. |
[14] | HENSEL J, WANG GONG-MING, LI YAT , et al. Synergistic effect of CdSe quantum dot sensitization and nitrogen doping of TiO2 nanostructures for photoelectrochemical solar hydrogen generation. Nano Letter, 2010,10(2):478-483. |
[15] | JI YUN-FANG, GUO WEI, CHEN HUI-HUI , et al. Surface Ti3+/Ti4+ redox shuttle enhancing photocatalytic H2 production in ultrathin TiO2 nanosheets/CdSe quantum dots. Journal of Physical Chemisty C, 2015,119(48):27053-27059. |
[16] | CHEN YU-BIN, CHUANG CHI-HUNG, QIN ZHI-XIAO , et al. Electron-transfer dependent photocatalytic hydrogen generation over cross-linked CdSe/TiO2 type-II heterostructure. Nanotechnology, 2017,28(8):84002. |
[17] | ZHOU YING, ZHANG XIAO-JING, ZHANG QIAN , et al. Role of graphene on the band structure and interfacial interaction of Bi2WO6/graphene composites with enhanced photocatalytic oxidation of NO. Journal of Material Chemistry A, 2014,2(39):16623-16631. |
[18] | LIU YANG, YU SHAN, ZHAO ZI-YAN , et al. N doped Bi2O2CO3/ graphene quantum dot composite photocatalyst: enhanced visible- light photocatalytic no oxidation and in situ drifts studies. Journal of Physical Chemistry C, 2017,121(22):12168-12177. |
[19] | PAN DENG-YU, JIAO JIN-KAI, LI ZHEN , et al. Efficient separation of electron-hole pairs in graphene quantum dots by TiO2 heterojunctions for dye degradation. ACS Sustainable Chemistry & Engineering, 2015,3(10):2405-2413. |
[20] | YU HUI-JUN, ZHAO YU-FEI, ZHOU CHAO , et al. Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution. Journal of Material Chemistry A, 2014,2(10):3344-3351. |
[21] | HUANG YU, AI ZHI-HUI, HO WEI-KEI , et al. Ultrasonic spray pyrolysis synthesis of porous Bi2WO6 microspheres and their visible- light-induced photocatalytic removal of NO. Journal of Physical Chemisty C, 2010,114(14):6342-6349. |
[22] | CEN WANG-LAI, XIONG TING, TANG CHI-YAO , et al. Effects of morphology and crystallinity on the photocatalytic activity of (BiO)2CO3 nano/microstructures. Industrial Engineering Chemistry Research, 2014,53(39):15002-15011. |
[23] | YU SHAN, LI ZHI-JUN, FAN XIANG-BING , et al. Vectorial electron transfer for improved hydrogen evolution by mercaptopropionic acid-regulated CdSe quantum-dots-TiO2-Ni(OH)2 assembly. ChemSusChem, 2015,8(4):642-649. |
[24] | NORRIS D J, BAWENDI M G . Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. Physical Review B, 1996,53(24):16338-16346. |
[25] | NOZIK A J, MEMMING R . Physical chemistry of semiconductor- liquid interfaces. Journal of Physical Chemistry, 1996,100(31):13061-13078. |
[26] | LIU WEN-JUN, CAI JING-YU, LI ZHAO-HUI , et al. Self- assembly of semiconductor nanoparticles/reduced graphene oxide (RGO) composite aerogels for enhanced photocatalytic performance and facile recycling in aqueous photocatalysis. ACS Sustainable Chemistry Engineering, 2015,3(2):277-282. |
[27] | SONG QIANG, LI LI, LUO HONG-XIANG , et al. Hierarchical nanoflower-ring structure Bi2O3/(BiO)2CO3 composite for photocatalytic degradation of Rhodamine B. Chinese Journal of Inorganic Chemistry, 2017,33(7):1161-1171. |
[28] | ZHAO ZI-YAN, ZHOU YING, WANG FANG , et al. Polyaniline- decorated {001} facets of Bi2O2CO3 nanosheets: in situ oxygen vacancy formation and enhanced visible light photo- catalytic activity. ACS Applied Material Interfaces, 2015,7(1):730-737. |
[29] | BI JUN, WU YAN-BO, ZHAO HENG-YAN , et al. Preparation and photocatalytic properties of La2CoFeO6 bamboo-like hollow nanofibers. Journal of Inorganic Materials, 2015,30(10):1031-1036. |
[30] | YIN SHU, LIU BIN, ZHANG PEI-LIN , et al. Photocatalytic oxidation of NOx under visible LED light irradiation over nitrogen- doped titania particles with iron or platinum loading. J. Phys. Chem.C, 2008,112(32):12425-12431. |
[31] | GE SU-XIANG, ZHANG LI-ZHI , et al. Efficient visible light driven photocatalytic removal of RhB and NO with low temperature synthesized In(OH)xSy hollow nanocubes: a comparative study. Environmental Science & Technology, 2011,45(7):3027-3033. |
[32] | WANG ZHEN-YU, GUAN WEI, SUN YAN-JUAN , et al. Water- assisted production of honeycomb-like g-C3N4 with ultralong carrier lifetime and outstanding photocatalytic activity. Nanoscale, 2015,7(6):2471-247. |
[33] | DONG XING-AN, ZHANG WEN-DONG, CUI WEN , et al. Pt quantum dots deposited on N-doped (BiO)2CO3: enhanced visible light photocatalytic NO removal and reaction pathway. Catalysis Science & Technology, 2017,7(6):1324-1332. |
[34] | MARTIROSYAN G G, AZIZYAN A S, KURTIKYAN T S , et al. In situ FT-IR and UV-Vis spectroscopy of the low-temperature NO disproportionation mediated by solid state manganese(II) porphyrinates. Inorganic Chemistry, 2006,45(10):4079-4087. |
[35] | HADJIIVANOV K, AVREYSKA V, KLISSURSKI D , et al. Surface species formed after NO adsorption and NO + O2 coadsorption on ZrO2 and sulfated ZrO2: an FT-IR spectroscopic study. Langmuir, 2002,18(5):1619-1625. |
[1] | WU Lin, HU Minglei, WANG Liping, HUANG Shaomeng, ZHOU Xiangyuan. Preparation of TiHAP@g-C3N4 Heterojunction and Photocatalytic Degradation of Methyl Orange [J]. Journal of Inorganic Materials, 2023, 38(5): 503-510. |
[2] | MA Xinquan, LI Xibao, CHEN Zhi, FENG Zhijun, HUANG Juntong. BiOBr/ZnMoO4 Step-scheme Heterojunction: Construction and Photocatalytic Degradation Properties [J]. Journal of Inorganic Materials, 2023, 38(1): 62-70. |
[3] | CHEN Hanxiang, ZHOU Min, MO Zhao, YI Jianjian, LI Huaming, XU Hui. 0D/2D CoN/g-C3N4 Composites: Structure and Photocatalytic Performance for Hydrogen Production [J]. Journal of Inorganic Materials, 2022, 37(9): 1001-1008. |
[4] | XUE Hongyun, WANG Congyu, MAHMOOD Asad, YU Jiajun, WANG Yan, XIE Xiaofeng, SUN Jing. Two-dimensional g-C3N4 Compositing with Ag-TiO2 as Deactivation Resistant Photocatalyst for Degradation of Gaseous Acetaldehyde [J]. Journal of Inorganic Materials, 2022, 37(8): 865-872. |
[5] | CHI Congcong, QU Panpan, REN Chaonan, XU Xin, BAI Feifei, ZHANG Danjie. Preparation of SiO2@Ag@SiO2@TiO2 Core-shell Structure and Its Photocatalytic Degradation Property [J]. Journal of Inorganic Materials, 2022, 37(7): 750-756. |
[6] | WANG Xiaojun, XU Wen, LIU Runlu, PAN Hui, ZHU Shenmin. Preparation and Properties of Ag@C3N4 Photocatalyst Supported by Hydrogel [J]. Journal of Inorganic Materials, 2022, 37(7): 731-740. |
[7] | LIU Xuechen, ZENG Di, ZHOU Yuanyi, WANG Haipeng, ZHANG Ling, WANG Wenzhong. Selective Oxidation of Biomass over Modified Carbon Nitride Photocatalysts [J]. Journal of Inorganic Materials, 2022, 37(1): 38-44. |
[8] | ZHANG Xian, ZHANG Ce, JIANG Wenjun, FENG Deqiang, YAO Wei. Synthesis, Electronic Structure and Visible Light Photocatalytic Performance of Quaternary BiMnVO5 [J]. Journal of Inorganic Materials, 2022, 37(1): 58-64. |
[9] | LIU Peng, WU Shimiao, WU Yunfeng, ZHANG Ning. Synthesis of Zn0.4(CuGa)0.3Ga2S4/CdS Photocatalyst for CO2 Reduction [J]. Journal of Inorganic Materials, 2022, 37(1): 15-21. |
[10] | WANG Luping, LU Zhanhui, WEI Xin, FANG Ming, WANG Xiangke. Application of Improved Grey Model in Photocatalytic Data Prediction [J]. Journal of Inorganic Materials, 2021, 36(8): 871-876. |
[11] | AN Weijia, LI Jing, WANG Shuyao, HU Jinshan, LIN Zaiyuan, CUI Wenquan, LIU Li, XIE Jun, LIANG Yinghua. Fe(III)/rGO/Bi2MoO6 Composite Photocatalyst Preparation and Phenol Degradation by Photocatalytic Fenton Synergy [J]. Journal of Inorganic Materials, 2021, 36(6): 615-622. |
[12] | XIAO Xiang, GUO Shaoke, DING Cheng, ZHANG Zhijie, HUANG Hairui, XU Jiayue. CsPbBr3@TiO2 Core-shell Structure Nanocomposite as Water Stable and Efficient Visible-light-driven Photocatalyst [J]. Journal of Inorganic Materials, 2021, 36(5): 507-512. |
[13] | XIONG Jinyan, LUO Qiang, ZHAO Kai, ZHANG Mengmeng, HAN Chao, CHENG Gang. Facilely Anchoring Cu nanoparticles on WO3 Nanocubes for Enhanced Photocatalysis through Efficient Interface Charge Transfer [J]. Journal of Inorganic Materials, 2021, 36(3): 325-331. |
[14] | SHU Mengyang, LU Jialin, ZHANG Zhijie, SHEN Tao, XU Jiayue. CsPbBr3 Perovskite Quantum Dots/Ultrathin C3N4 Nanosheet 0D/2D Composite: Enhanced Stability and Photocatalytic Activity [J]. Journal of Inorganic Materials, 2021, 36(11): 1217-1222. |
[15] | LIU Yaxin, WANG Min, SHEN Meng, WANG Qiang, ZHANG Lingxia. Bi-doped Ceria with Increased Oxygen Vacancy for Enhanced CO2 Photoreduction Performance [J]. Journal of Inorganic Materials, 2021, 36(1): 88-94. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||