Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (4): 407-416.DOI: 10.15541/jim20180280
Previous Articles Next Articles
Zhi-Jun MA,Chang-Ye MANG,Hai-Tao ZHAO,Zhi-Hao GUAN,Liang CHENG
Received:
2018-06-22
Revised:
2018-10-22
Published:
2019-04-20
Online:
2019-04-15
Supported by:
CLC Number:
Zhi-Jun MA, Chang-Ye MANG, Hai-Tao ZHAO, Zhi-Hao GUAN, Liang CHENG. Comparison of Electromagnetism Behavior of Different Content Cobalt-zinc Ferrite Loaded with Graphene[J]. Journal of Inorganic Materials, 2019, 34(4): 407-416.
Structural formula | 2θ/(°) | a/nm | (311) Priority crystallization diffraction peak | ||
---|---|---|---|---|---|
FWHM/rad | Intensity/(a.u.) | Size/nm | |||
Co0.5Zn0.5Fe2O4 | 35.597 | 0.8391 | 0.618 | 86 | 13.8 |
rGO/Co0.5Zn0.5Fe2O4 | 35.595 | 0.8358 | 0.466 | 94 | 17.7 |
Table 1 Composition and structure parameters of ferrite
Structural formula | 2θ/(°) | a/nm | (311) Priority crystallization diffraction peak | ||
---|---|---|---|---|---|
FWHM/rad | Intensity/(a.u.) | Size/nm | |||
Co0.5Zn0.5Fe2O4 | 35.597 | 0.8391 | 0.618 | 86 | 13.8 |
rGO/Co0.5Zn0.5Fe2O4 | 35.595 | 0.8358 | 0.466 | 94 | 17.7 |
Samples | Graphite | GO | rGO/Co0.5Zn0.5Fe2O4 |
---|---|---|---|
ID/IG | 0.21 | 0.95 | 1.02 |
Table 2 ID/IG ratios of natural flake graphite, GO and rGO/Co0.5Zn0.5Fe2O4 composite
Samples | Graphite | GO | rGO/Co0.5Zn0.5Fe2O4 |
---|---|---|---|
ID/IG | 0.21 | 0.95 | 1.02 |
Fig. 5 Real part of complex permittivity (a), imaginary part of complex permittivity (b), real part of complex permeability (c), imaginary part of complex permeability (d), dielectric loss tangent (e) and magnetic loss tangent (f) of GO、Co0.5Zn0.5Fe2O4 and rGO/Co0.5Zn0.5Fe2O4 composite with different ratios
Fig. 6 Real part of complex permittivity (ε°)-imaginary part of complex permittivity (ε?) curves of GO and rGO/Co0.5Zn0.5Fe2O4 composites with different ratios
[1] | WU G L, CHENG Y H, XIANG F , et al. Morphology controlled synthesis, characterization and microwave absorption properties of nanostructured 3D CeO2. Mat. Sci. Semicond. Process, 2016,41(2):6-11. |
[2] | FU W, LIU S, FAN W , et al. Hollow glass microspheres coated with CoFe2O4 and its microwave absorption property.[J]. Magn. Magn. Mater., 2007,316(1):54-58. |
[3] | HAJALILOU A, HASHIM M, MASOUDI M T . A comparative study of in-situ mechanochemically synthesized Mn0.5Zn0.5Fe2O4 ferrite nanoparticles in the MnO/ZnO/Fe2O3 and MnO2/Zn/Fe2O3 systems. Ceramics International, 2015,41(6):8070-8079. |
[4] | ZHANG X C, WANG D P, YAO A H , et al. Optimization on preparation process of Mn-Zn ferrite powder by Sol-Gel method. Bulletin of the Chinese Ceramic Society, 2008,27(5):937-940. |
[5] | ZHAO H T, ZHANG Q, LIU R P , et al. Synthesis and magnetic properties of monodisperse ZnFe2O4 nanoparticles. Journal of Materials Engineering, 2016,44(01):103-107. |
[6] | LIU J, CHE R, CHEN H , et al. Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells. Small, 2012,8(8):1214-1221. |
[7] | GUO J, WU H, LIAO X , et al. Facile synthesis of size-controlled silver nanoparticles using plant tannin grafted collagen fiber as reductant and stabilizer for microwave absorption application in the whole Ku band. J. Phys. Chem. C, 2011,115(48):23688-23694. |
[8] | KONG L, YIN X, ZHANG Y , et al. Electromagnetic wave absorption properties of reduced graphene oxide modified by Maghemite colloidal nanoparticle clusters. J. Phys. Chem.C, 2013,117(38):19701-19711. |
[9] | SCHEDIN F, GEIM A K, MOROZOV S V , et al. Detection of individual gas molecules adsorbed on graphene. Nat. Mater., 2007,6(9):652-655. |
[10] | ANG P K, CHEN W, WEE A , et al. Solution-gated epitaxial graphene as pH sensor.[J]. Am. Chem. Soc., 2008,130(44):14392-14393. |
[11] | STOLLER M D, PARK S J, ZHU Y W , et al. Graphene-based ultracapacitors. Nano Lett., 2008,8(10):3498-3502. |
[12] | EDA G, FANCHINI G, CHHOWALLA M . Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol., 2008,3(5):270-274. |
[13] | YOO E, KIM J, HOSONO E , et al. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett., 2008,8(8):2277-2282. |
[14] | GEIM A K . Graphene: status and prospects. Science, 2009,324(5934):1530-1534. |
[15] | BALANDIN A A, GHOSH S, BAO W Z , et al. Lausuperior thermal conductivity of single layer graphene. Nano Lett., 2008,8(3):902-907. |
[16] | LEE C, WEI X D, KYSAR J W , et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008,321(5887):385-388. |
[17] | LI D, MULLER M B, GILJE S , et al. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol., 2008,3(2):101-105. |
[18] | JUNG I, DIKIN D A, PINER R D , et al. Tunable electrical conductivity of individual graphene oxide sheets reduced at “low” temperatures. Nano Lett., 2008,8(12):4283-4287. |
[19] | CHEN H, MULLER M B, GILMORE K J , et al. Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv. Mater., 2008,20(18):3557-3561. |
[20] | LIAN P C, ZHU X F, XIANG H F , et al. Enhanced cycling performance of Fe3O4-graphene nanocomposite as an anode material for lithium-ion batteries. Electrochim.Acta, 2010,56(2):834-840. |
[21] | LI N W, ZHENG M B, CHANG X F , et al. Preparation of magnetic CoFe2O4-functionalized graphene sheets via a facile hydrothermal method and their adsorption properties.[J]. Solid State Chem., 2011,184(4):953-958. |
[22] | ZONG M, HUANG Y, ZHANG N , et al. Influence of (RGO)/(Ferrite) ratios and graphene reduction degree on microwave absorption properties of graphene composites. J. Alloys Compd., 2015,644(25):491-501. |
[23] | DAN C, LIU X, YU R , et al. Enhanced microwave absorption properties of flake-shaped FePCB metallic glass/graphene composites. Composites Part A, 2016,89:33-39. |
[24] | AN R, WEI H Y, HE M , et al. The progress analysis of carbon- based composites used for electromagnetic wave absorption. Materials Review, 2017,31(21):46-53, 61. |
[25] | HUMMERS W S, OFFEMAN R E . Preparation of graphitic oxide. Journal of the American Chemical Society, 1958,80(6):1339. |
[26] | KOVTYUKHOVA N I, OLLIVIER P J . Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chemical Materials, 1999,11(3):71-78. |
[27] | GENG Y, WANG S J, KIM J K . Preparation of graphite nanoplatelets and graphene sheets.[J]. Colloid Interface Sci., 2009,336(2):592-598. |
[28] | SU J, CAO M H, REN L , et al. Fe3O4-graphene nanocomposites with improved Lithium storage and Magnetism properties. J. Phys. Chem.C, 2011,115(30):14469-14477. |
[29] | GABAL M A, EL-SHISHTAWY R M, ANGARI YM . Structural and magnetic properties of nano-crystalline Ni-Zn ferrites synthesized using egg-white precursor.[J]. Magn. Magn. Mater., 2012,324(14):2258-2264. |
[30] | YANG H B, YE T, LIN Y , et al. Microwave absorbing properties of the ferrite composites based on graphene.[J]. Alloys Compd., 2016,683:567-574. |
[31] | GRAF D, MOLITOR F, ENSSLIN K , et al. Spatially resolved raman spectroscopy of single and few-layer graphene. Nano Lett., 2007,7(2):238-242. |
[32] | BELL N J, HG Y H, DU A J , et al. Understanding the enhancement in photoelectrochemical properties of photocatalytically prepared TiO2-reduced graphene oxide composite. J. Phys. Chem.C, 2011,115(13):6004-6009. |
[33] | FU MIN, JIAO QINGZE, ZHAO YUN . Preparation of NiFe2O4 nanorod-graphene compoites via an ionic liquid assisted one-step hydrothermal approch and their microwave absorbing properties. Journal of Materials Chemistry A, 2013,1(18):5577-5586. |
[34] | FERRARI AC, ROBERTSON A . Interpretation of Raman spectra of disordered and amorphous carbon. J. Physiol. Rev.B, 2000,61(20):14095-14107. |
[35] | SUN XIN, HE JIANPING, LI GUOXIAN , et al. Laminated magnetic graphene with enhanced electromagnetic wave absorption properties. Journal of Materials Chemistry C, 2013,1(4):765-777. |
[36] | TUINSTRA F, KOENIG J L . Raman spectrum of graphite.[J]. Chem. Phys., 1970,53(3):1126-1130. |
[37] | MURUGAN A V, MURALIGANTH T, MANTHIRAM A . Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy strorage. Chem. Mater., 2009,22(8):5004-5006. |
[38] | FU MIN, JIAO QINGZE, ZHAO YUN . In situ fabrication and characterization of cobalt ferrite nanorods/graphene composites. Materials Characterization, 2013,86(8):303-315. |
[39] | JEONG H K, LEE Y P, LAHAYE R J , et al. Evidence of graphitic AB stacking order of graphite oxides.[J]. Am. Chem. Soc., 2008,130(4):1362-1366. |
[40] | NETHRAVATHI C, NISHA T, RAVISHANKAR N , et al. Graphene- nanocrystalline metal sulphide composites produced by a one-pot reaction starting from graphite oxide. Carbon, 2009,47(8):2054-2059. |
[41] | BOURLINOS A B, GOURNIS D, PETRIDIS D , et al. Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir, 2003,19(15):6050-6055. |
[42] | ZHANG X F, DONG X L, HUANG H , et al. Microwave absorption properties of the carbon-coated nickel nanocapsules. Appl. Phys. Lett., 2006, 89(5): 053115-1-3. |
[43] | TIANJIAO B, YAN Z, XIAOFENG S , et al. A study of the electromagnetic properties of cobalt-multiwalled carbon nanotubes(co-mwcnts)composites. Materials Science And Engineering: B, 2011,176(12):906-912. |
[44] | HASSAN A, KHAN M A, ASGHAR M , et al. Nanocrystalline Zn1-xCo0.5xNi0.5xFe2O4 ferrites: fabrication via co-precipitation route with enhanced magnetic and electrical properties.[J]. Magn. Magn. Mater., 2015,393:56-77. |
[45] | FRENKEL J, DORFMAN J . Spontaneous and induced magnetisation in ferromagnetic bodies. Nature, 1930,126(3173):274-275. |
[46] | YANG HAIBO, YE TING, LIN YING , et al. Microwave absorbing properties of the ferrite composites based on grapheme.[J]. Alloys Compd., 2016,683:567-574. |
[47] | MILES P A, WESTPHAL W B, VON HIPPEL A . Dielectric spectroscopy of ferromagnetic semiconductors rev. Mod. Phys., 1957,29(3):279-307. |
[48] | MA Z, WANG J B, LIU Q F , et al. Microwave absorption of electroless Ni-Co-P-coated SiO2 powder. Appl. Surf. Sci., 2009,255(13):6629-6633. |
[49] | RUTTER G M, CRAIN J N, GUISINGER N P , et al. Scattering and interference in epitaxial graphene. Science, 2007,317(5835):219-222. |
[50] | SUN S L, HE Q, XIAO S Y , et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater., 2012,11(5):426-431. |
[1] | CHEN Saisai, PANG Yali, WANG Jiaona, GONG Yan, WANG Rui, LUAN Xiaowan, LI Xin. Preparation and Properties of Green-yellow Reversible Electro-thermochromic Fabric [J]. Journal of Inorganic Materials, 2022, 37(9): 954-960. |
[2] | SUN Ming, SHAO Puzhen, SUN Kai, HUANG Jianhua, ZHANG Qiang, XIU Ziyang, XIAO Haiying, WU Gaohui. First-principles Study on Interface of Reduced Graphene Oxide Reinforced Aluminum Matrix Composites [J]. Journal of Inorganic Materials, 2022, 37(6): 651-659. |
[3] | WANG Hongli, WANG Nan, WANG Liying, SONG Erhong, ZHAO Zhankui. Hydrogen Generation from Formic Acid Boosted by Functionalized Graphene Supported AuPd Nanocatalysts [J]. Journal of Inorganic Materials, 2022, 37(5): 547-553. |
[4] | AN Lin, WU Hao, HAN Xin, LI Yaogang, WANG Hongzhi, ZHANG Qinghong. Non-precious Metals Co5.47N/Nitrogen-doped rGO Co-catalyst Enhanced Photocatalytic Hydrogen Evolution Performance of TiO2 [J]. Journal of Inorganic Materials, 2022, 37(5): 534-540. |
[5] | DONG Shurui, ZHAO Di, ZHAO Jing, JIN Wanqin. Effect of Ionized Amino Acid on the Water-selective Permeation through Graphene Oxide Membrane in Pervaporation Process [J]. Journal of Inorganic Materials, 2022, 37(4): 387-394. |
[6] | JIANG Lili, XU Shuaishuai, XIA Baokai, CHEN Sheng, ZHU Junwu. Defect Engineering of Graphene Hybrid Catalysts for Oxygen Reduction Reactions [J]. Journal of Inorganic Materials, 2022, 37(2): 215-222. |
[7] | WU Jing, YU Libing, LIU Shuaishuai, HUANG Qiuyan, JIANG Shanshan, ANTON Matveev, WANG Lianli, SONG Erhong, XIAO Beibei. NiN4/Cr Embedded Graphene for Electrochemical Nitrogen Fixation [J]. Journal of Inorganic Materials, 2022, 37(10): 1141-1148. |
[8] | CHU Yuxing, LIU Hairui, YAN Shuang. Preparation and Gas Sensing Properties of SnO2/NiO Composite Semiconductor Nanofibers [J]. Journal of Inorganic Materials, 2021, 36(9): 950-958. |
[9] | LI Tie, LI Yue, WANG Yingyi, ZHANG Ting. Preparation and Catalytic Properties of Graphene-Bismuth Ferrite Nanocrystal Nanocomposite [J]. Journal of Inorganic Materials, 2021, 36(7): 725-732. |
[10] | XIANG Hui, QUAN Hui, HU Yiyuan, ZHAO Weiqian, XU Bo, YIN Jiang. Piezoelectricity of Graphene-like Monolayer ZnO and GaN [J]. Journal of Inorganic Materials, 2021, 36(5): 492-496. |
[11] | LI Hao, TANG Zhihong, ZHUO Shangjun, QIAN Rong. High Performance of Room-temperature NO2 Gas Sensor Based on ZIF8/rGO [J]. Journal of Inorganic Materials, 2021, 36(12): 1277-1282. |
[12] | HE Junlong, SONG Erhong, WANG Lianjun, JIANG Wan. DFT Calculation of NO Adsorption on Cr Doped Graphene [J]. Journal of Inorganic Materials, 2021, 36(10): 1047-1052. |
[13] | LUO Yi,FENG Junzong,FENG Jian,JIANG Yonggang,LI Liangjun. Research Progress on Advanced Carbon Materials as Pt Support for Proton Exchange Membrane Fuel Cells [J]. Journal of Inorganic Materials, 2020, 35(4): 407-415. |
[14] | ZHANG Wei,GAO Peng,HOU Chengyi,LI Yaogang,ZHANG Qinghong,WANG Hongzhi. Chip Sensor for pH and Temperature Monitoring Based on ZnO Composite [J]. Journal of Inorganic Materials, 2020, 35(4): 416-422. |
[15] | ZHAO Chaofeng, JIN Jiaren, HUO Yingzhong, SUN Lu, AI Yuejie. Adsorption of Phenolic Organic Pollutants on Graphene Oxide: Molecular Dynamics Study [J]. Journal of Inorganic Materials, 2020, 35(3): 277-283. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||