Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (3): 341-348.DOI: 10.15541/jim20180249
Special Issue: 热电材料与器件
LIU Hong-Xia1,2,3, LI Wen1, ZHANG Xin-Yue1, LI Juan1, PEI Yan-Zhong1
Received:
2018-05-30
Published:
2019-03-20
Online:
2019-02-26
About author:
LIU Hong-Xia (1992-), female, candidate of PhD. E-mail: hongxliu@126.com
Supported by:
CLC Number:
LIU Hong-Xia, LI Wen, ZHANG Xin-Yue, LI Juan, PEI Yan-Zhong. Thermoelectric Properties of (Ag2Se)1-x(Bi2Se3)x[J]. Journal of Inorganic Materials, 2019, 34(3): 341-348.
Fig. 5 Composition dependent Hall carrier concentration (a) and normalized optical absorption versus photon energy (b) at room temperature for (Ag2Se)1-x(Bi2Se3)x(0.5≤x≤0.56)
Fig. 6 Temperature dependent Hall coefficient (RH) and mobility (µH) (a), deformation potential coefficient (Edef) and density of states effective mass (m*) (b), Hall carrier concentration dependent Hall mobility (c) and Seebeck coefficient (d) at different temperatures for (Ag2Se)1-x(Bi2Se3)x(0.5≤x≤0.56), with a comparison to available literature results[52,64-65]. The experimental results here agree well with the model prediction based on a SPB approximation with a dominant scattering by acoustic phonons
Fig. 7 Temperature dependent Seebeck coefficient (a), electrical resistivity (b), total thermal conductivity (c) and lattice thermal conductivity (d) for (Ag2Se)1-x(Bi2Se3)x(0.5≤x≤0.56), with a comparison to available literature results[63,64]
(Ag2Se)1-x(Bi2Se3)x | νT/ (m•s-1) | νL/ (m•s-1) | νs/ (m•s-1) | B/ GPa | γ | θD /K |
---|---|---|---|---|---|---|
x=0.5 | 1390 | 2560 | 1550 | 31.5 | 1.7 | 158 |
x=0.51 | 1410 | 2610 | 1570 | 32.4 | 1.7 | 159 |
x=0.52 | 1360 | 2500 | 1520 | 29.6 | 1.7 | 154 |
x=0.54 | 1290 | 2660 | 1450 | 37.8 | 2.1 | 146 |
x=0.56 | 1380 | 2760 | 1550 | 39.8 | 2.0 | 156 |
Table 1 Measured sound velocities and the estimated physical parameters for (Ag2Se)1-x(Bi2Se3)x(0.5≤x≤0.56)
(Ag2Se)1-x(Bi2Se3)x | νT/ (m•s-1) | νL/ (m•s-1) | νs/ (m•s-1) | B/ GPa | γ | θD /K |
---|---|---|---|---|---|---|
x=0.5 | 1390 | 2560 | 1550 | 31.5 | 1.7 | 158 |
x=0.51 | 1410 | 2610 | 1570 | 32.4 | 1.7 | 159 |
x=0.52 | 1360 | 2500 | 1520 | 29.6 | 1.7 | 154 |
x=0.54 | 1290 | 2660 | 1450 | 37.8 | 2.1 | 146 |
x=0.56 | 1380 | 2760 | 1550 | 39.8 | 2.0 | 156 |
Fig. 8 Temperature dependent ZT for (Ag2Se)1-x(Bi2Se3)x(0.5≤x≤0.56) (a) and Hall carrier concentration dependentZT at different temperatures (b) with a comparison to model prediction and literature results[52,63-65]
[1] | XI H, LUO L, FRAISSE G.Development and applications of solar-based thermoelectric technologies. Renewable and Sustainable Energy Reviews, 2007, 11(5): 923-936. |
[2] | HAMID ELSHEIKH M, SHNAWAH D A, SABRI M F M, et al. A review on thermoelectric renewable energy: principle parameters that affect their performance. Renewable and Sustainable Energy Reviews, 2014, 30: 337-355. |
[3] | CADOFF I B, MILLER E. Thermoelectric bmaterials and devices, New York: Reinhold Pub. Corp., 1960: p xiii, 344p. |
[4] | BELL L E.Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008, 321(5895): 1457-1461. |
[5] | TRITT T M.Recent Trends in Thermoelectric Materials Research. San Diego: Academic Press, 2001. |
[6] | WOOD C.Materials for thermoelectric energy conversion. Reports on Progress in Physics, 1988, 51(4): 459-539. |
[7] | SNYDER G J, TOBERER E S.Complex thermoelectric materials. Nature Materials, 2008, 7(2): 105-114. |
[8] | BHANDARI C M, ROWE D M. Thermoelectric Transport Theory.In CRC handbook of thermoelectrics, Rowe, D. M., Ed. Boca Raton: CRC Press, 1995: 27-42. |
[9] | PEI Y, SHI X, LALONDE A, et al.Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 2011, 473(7345): 66-69. |
[10] | LIN S, LI W, CHEN Z, et al.Tellurium as a high-performance elemental thermoelectric. Nature Communications, 2016, 7: 10287. |
[11] | CHEN Z, JIAN Z, LI W, et al.Lattice dislocations enhancing thermoelectric PbTe in addition to band convergence. Advanced Materials, 2017, 29(23): 1606768. |
[12] | LI W, WU Y, LIN S, et al.Advances in environment-friendly SnTe thermoelectrics. ACS Energy Letters, 2017, 2(10): 2349-2355. |
[13] | LI W, ZHENG L L, GE B H, et al. Promoting SnTe as an eco-friendly solution for p-PbTe thermoelectric via band convergence and interstitial defects. Advanced Materials, 2017, 29(17): 1605887-1-8. |
[14] | LI J, ZHANG X, CHEN Z, et al.Low-symmetry rhombohedral GeTe thermoelectrics. Joule, 2018, 2(5): 976-987. |
[15] | LI J, CHEN Z, ZHANG X, et al. Simultaneous optimization of carrier concentration and alloy scattering for ultrahigh performance GeTe thermoelectrics. Advanced Science, 2017, 4(12): 1700341-1-9. |
[16] | HONG M, CHEN Z G, YANG L, et al. Realizing zT of 2.3 in Ge1-x-ySbxInyTe via reducing the phase-transition temperature and introducing resonant energy doping. Advanced Materials, 2018, 30(11): 1705942-1-8. |
[17] | HONG A J, LI L, ZHU H X, et al.Optimizing the thermoelectric performance of low-temperature SnSe compounds by electronic structure design. Journal of Materials Chemistry A, 2015, 3(25): 13365-13370. |
[18] | LIU W, TAN X, YIN K, et al.Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1-xSnx solid solutions. Phys. Rev. Lett., 2012, 108(16): 166601. |
[19] | FU C G, BAI S Q, LIU Y T, et al. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials. Nat. Commun., 2015, 6: 8144-1-7. |
[20] | CHEN Z, ZHANG X, PEI Y. Manipulation of phonon transport in thermoelectrics. Advanced Materials, 2018,2(1):1705617-1-12. |
[21] | KANATZIDIS M G.Nanostructured thermoelectrics: the new paradigm? Chemistry of Materials, 2010, 22(3): 648-659. |
[22] | PEI Y Z, LENSCH-FALK J, TOBERER E S, et al.High thermoelectric performance in PbTe due to large nanoscale Ag2Te precipitates and La doping. Advanced Functional Materials, 2011, 21(2): 241-249. |
[23] | XU J J, LI H, DU B L, et al.High ZT in nanostructuring AgSbTe2. Journal of Materials Chemistry, 2010, 20(29): 6138-6143. |
[24] | SCHAUMANN J, LOOR M, UNAL D, et al.Improving the zT value of thermoelectrics by nanostructuring: tuning the nanoparticle morphology of Sb2Te3 by using ionic liquids. Dalton Trans, 2017, 46(3): 656-668. |
[25] | PICHANUSAKORN P, BANDARU P.Nanostructured thermoelectrics. Materials Science and Engineering: R: Reports, 2010, 67(2/3/4): 19-63. |
[26] | ZOU T, QIN X, ZHANG Y, et al. Enhanced thermoelectric performance of beta-Zn4Sb3 based nanocomposites through combined effects of density of states resonance and carrier energy filtering. Scientific Reports, 2015, 5: 17803-1-9. |
[27] | POUDEL B, HAO Q, MA Y, et al.High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science, 2008, 320(5876): 634-638. |
[28] | HONG M, CHEN Z G, YANG L, et al.BixSb2-xTe3 nanoplates with enhanced thermoelectric performance due to sufficiently decoupled electronic transport properties and strong wide-frequency phonon scatterings. Nano Energy, 2016, 20: 144-155. |
[29] | HONG M, CHASAPIS T C, CHEN Z G, et al.n-type Bi2Te3-xSexnanoplates with enhanced thermoelectric efficiency driven by wide-frequency phonon scatterings and synergistic carrier scatterings. ACS Nano, 2016, 10(4): 4719-4727. |
[30] | LI W, LIN S, ZHANG X, et al.Thermoelectric properties of Cu2SnSe4 with intrinsic vacancy. Chemistry of Materials, 2016, 28(17): 6227-6232. |
[31] | HU L, ZHU T, LIU X, et al.Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials. Advanced Functional Materials, 2014, 24(33): 5211-5218. |
[32] | PEI Y, ZHENG L, LI W, et al.Interstitial point defect scattering contributing to high thermoelectric performance in SnTe. Advanced Electronic Materials, 2016, 2(6): 1600019. |
[33] | SHEN J W, ZHANG X Y, CHEN Z W, et al.Substitutional defects enhancing thermoelectric CuGaTe2. Journal of Materials Chemistry A, 2017, 5(11): 5314-5320. |
[34] | BOZHKO V V, NOVOSAD О V, PARASYUK O V, et al.Influence of cation-vacancy defects on the properties of CuInSe2-ZnIn2Se4 solid solutions. Journal of Alloys and Compounds, 2015, 618: 712-717. |
[35] | KIM S I, LEE K H, MUN H A, et al.Thermoelectrics dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science, 2015, 348(6230): 109-114. |
[36] | CHEN Z, GE B, LI W, et al. Vacancy-induced dislocations within grains for high-performance PbSe thermoelectrics. Nat. Commun., 2017, 8: 13828-1-8. |
[37] | LIU H, SHI X, XU F, et al.Copper ion liquid-like thermoelectrics. Nat. Mater., 2012, 11(5): 422-425. |
[38] | QIU W, XI L, WEI P, et al.Part-crystalline part-liquid state and rattling-like thermal damping in materials with chemical-bond hierarchy. PNAS, 2014, 111(42): 15031-15035. |
[39] | LI W, LIN S, GE B, et al. Low sound velocity contributing to the high thermoelectric performance of Ag8SnSe6. Advanced Science, 2016, 3(11): 1600196-1-7. |
[40] | ZHANG X, CHEN Z, LIN S, et al.Promising thermoelectric Ag5-δTe3 with intrinsic low lattice thermal conductivity. ACS Energy Letters, 2017, 2(10): 2470-2477. |
[41] | LI WEN, LIN SIQI, WEISS MANUEL, et al. Crystal structure induced ultralow lattice thermal conductivity in thermoelectric Ag9AlSe6. Advanced Energy Materials, 2018, 8: 1800030-1-8. |
[42] | MORELLI D T, JOVOVIC V, HEREMANS J P. Intrinsically minimal thermal conductivity in cubic I-V-VI2 semiconductors. Phys. Rev. Lett., 2008, 101(3): 035901-1-4. |
[43] | GUIN S N, NEGI D S, DATTA R, et al.Nanostructuring, carrier engineering and bond anharmonicity synergistically boost the thermoelectric performance of p-type AgSbSe2-ZnSe. Journal of Materials Chemistry A, 2014, 2(12): 4324-4331. |
[44] | HONG A J, GONG J J, LI L, et al.Predicting high thermoelectric performance of ABX ternary compounds NaMgX (X = P, Sb, As) with weak electron-phonon coupling and strong bonding anharmonicity. J. Mater. Chem. C, 2016, 4(15): 3281-3289. |
[45] | LIN S, LI W, LI S, et al.High thermoelectric performance of Ag9GaSe6 enabled by low cutoff frequency of acoustic phonons. Joule, 2017, 1(4): 816-830. |
[46] | NIELSEN M D, OZOLINS V, HEREMANS J P.Lone pair electrons minimize lattice thermal conductivity. Energy Environ. Sci., 2013, 6(2): 570-578. |
[47] | MA J, DELAIRE O, MAY A F, et al.Glass-like phonon scattering from a spontaneous nanostructure in AgSbTe2. Nat. Nano, 2013, 8(6): 445-451. |
[48] | LI D, QIN X Y, ZOU T H, et al.High thermoelectric properties for Sn-doped AgSbSe2. Journal of Alloys and Compounds, 2015, 635: 87-91. |
[49] | GUIN S N, CHATTERJEE A, NEGI D S, et al.High thermoelectric performance in tellurium free p-type AgSbSe2. Energy & Environmental Science, 2013, 6(9): 2603-2608. |
[50] | GUIN S N, CHATTERJEE A, BISWAS K.Enhanced thermoelectric performance in p-type AgSbSe2 by Cd-doping. RSC Advances, 2014, 4(23): 11811-11815. |
[51] | CAI S, LIU Z, SUN J, et al.Enhancement of thermoelectric properties by Na doping in Te-free p-type AgSbSe2. Dalton Trans, 2015, 44(3): 1046-1051. |
[52] | PAN L, BERARDAN D, DRAGOE N.High thermoelectric properties of n-type AgBiSe2. [J]. Am. Chem. Soc., 2013, 135(13): 4914-4917. |
[53] | ZOU M, LIU Q, WU CF, et al.Comparing the role of annealing on the transport properties of polymorphous AgBiSe2 and monophase AgSbSe2. RSC Advances, 2018, 8(13): 7055-7061. |
[54] | XIAO C, QIN X, ZHANG J, et al.High thermoelectric and reversible p-n-p conduction type switching integrated in dimetal chalcogenide. [J]. Am. Chem. Soc., 2012, 134(44): 18460-18466. |
[55] | GAO W, WANG Z, HUANG J, et al.Extraordinary thermoelectric performance realized in hierarchically structured AgSbSe2 with ultralow thermal conductivity. ACS Appl. Mater. Interfaces, 2018, 10(22): 18685-18692. |
[56] | HONG M, CHEN ZG, YANG L, et al. Achieving ZT>2 in p-type AgSbTe2-xSexalloys via exploring the extra light valence band and introducing dense stacking faults. Advanced Energy Materials, 2018, 8(9): 1702333-1-7. |
[57] | TADAMASA H, KAZUHIRO K, MOTOHISA H.Phase diagrams of the pseudo-binary Cu2Se-Bi2Se3 and Ag2Se-Bi2Se3 systems and thermoelectric properties of Cu2Se-Bi2Se3 solid solution. Advanced Energy Conversion, 1966, 6(4): 195-200. |
[58] | WERNICK J H, GELLER S, BENSON K E.Constitution of the AgSbSe2-AgSbTe2-AgBiSe2-AgBiTe2 system. Journal of Physics & Chemistry of Solids, 1958, 7(2): 240-248. |
[59] | MANOLIKAS C, SPYRIDELIS J.Electron microscopic study of polymorphismand defects in AgBiSe2 and AgBiS2. Mat. Res. Bull., 1977, 12: 907-913. |
[60] | GELLER S, WERNICK J H.Ternary semiconducting compounds with sodium chloride-like structure-AgSbSe2, AgSbTe2, AgBiS2, AgBiSe2. Inorganic Chemistry, 2001, 20(7): 2246-2250. |
[61] | HOANG K, MAHANTI S D.Atomic and electronic structures of I-V-VI2 ternary chalcogenides. Journal of Science: Advanced Materials and Devices, 2016, 1(1): 51-56. |
[62] | WU H J, WEI P C, CHENG H Y, et al.Ultralow thermal conductivity in n-type Ge-doped AgBiSe2 thermoelectric materials. Acta Materialia, 2017, 141: 217-229. |
[63] | LIU X C, JIN D, LIANG X. Enhanced thermoelectric performance of n-type transformable AgBiSe2 polymorphs by indium doping. Applied Physics Letters, 2016, 109(13): 133901-1-5. |
[64] | GOTO Y, NISHIDA A, NISHIATE H, et al.Effect of Te substitution on crystal structure and transport properties of AgBiSe2 thermoelectric material. Dalton Trans., 2018, 47(8): 2575-2580. |
[65] | GUIN S N, SRIHARI V, BISWAS K.Promising thermoelectric performance in n-type AgBiSe2: effect of aliovalent anion doping. Journal of Materials Chemistry A, 2015, 3(2): 648-655. |
[66] | BHANDARI C M, ROWE D M.Optimization of Carrier Concentration. In CRC Handbook of Thermoelectrics, Rowe, D. M., Ed. Boca Raton: CRC Press, 1995: 43-53. |
[67] | PEI Y Z, GIBBS Z M, GLOSKOVSKII A, et al. Optimum carrier concentration in n-type PbTe thermoelectrics. Advanced Energy Materials, 2014, 4(13): 1400486-1-12. |
[68] | ZHANG X Y, PEI Y Z. Manipulation of charge transport in thermoelectrics. npj Quantum Materials, 2017, 2: 68-1-5. |
[69] | LI W, CHEN Z, LIN S, et al.Band and scattering tuning for high performance thermoelectric Sn1-xMnxTe alloys. Journal of Materiomics, 2015, 1(4): 307-315. |
[70] | GIBBS Z M, LALONDE A, SNYDER G J. Optical band gap and the Burstein-Moss effect in iodine doped PbTe using diffuse reflectance infrared Fourier transform spectroscopy. New Journal of Physics, 2013, 15(7): 075020-1-18. |
[71] | PARKER D S, MAY A F, SINGH D J. Benefits of carrier-pocket anisotropy to thermoelectric performance: the case of p-type AgBiSe2. Physical Review Applied, 2015, 3(6):064003-1-11. |
[72] | BOCHER F, CULVER S P, PEILSTOCKER J, et al.Vacancy and anti-site disorder scattering in AgBiSe2 thermoelectrics. Dalton Trans, 2017, 46(12): 3906-3914. |
[73] | ROUFOSSE M, KLEMENS P G.Thermal conductivity of complex dielectric crystals. Physical Review B, 1973, 7(12): 5379-5386. |
[74] | SANDITOV D S, BELOMESTNYKH V N.Relation between the parameters of the elasticity theory and averaged bulk modulus of solids. Technical Physics, 2011, 56(11): 1619-1623. |
[75] | BHARDWAJ A, RAJPUT A, SHUKLA A K, et al.Mg3Sb2-based Zintl compound: a non-toxic, inexpensive and abundant thermoelectric material for power generation. RSC Advances, 2013, 3: 8504-8516. |
[1] | HE Danqi, WEI Mingxu, LIU Ruizhi, TANG Zhixin, ZHAI Pengcheng, ZHAO Wenyu. Heavy-Fermion YbAl3 Materials: One-step Synthesis and Enhanced Thermoelectric Performance [J]. Journal of Inorganic Materials, 2023, 38(5): 577-582. |
[2] | WANG Pengjiang, KANG Huijun, YANG Xiong, LIU Ying, CHENG Cheng, WANG Tongmin. Inhibition of Lattice Thermal Conductivity of ZrNiSn-based Half-Heusler Thermoelectric Materials by Entropy Adjustment [J]. Journal of Inorganic Materials, 2022, 37(7): 717-723. |
[3] | CHENG Cheng, LI Jianbo, TIAN Zhen, WANG Pengjiang, KANG Huijun, WANG Tongmin. Thermoelectric Property of In2O3/InNbO4 Composites [J]. Journal of Inorganic Materials, 2022, 37(7): 724-730. |
[4] | LOU Xunuo, DENG Houquan, LI Shuang, ZHANG Qingtang, XIONG Wenjie, TANG Guodong. Thermal and Electrcial Transport Properities of Ge Doped MnTe Thermoelectrics [J]. Journal of Inorganic Materials, 2022, 37(2): 209-214. |
[5] | JIN Min, BAI Xudong, ZHANG Rulin, ZHOU Lina, LI Rongbin. Metal Sulfide Ag2S: Fabrication via Zone Melting Method and Its Thermoelectric Property [J]. Journal of Inorganic Materials, 2022, 37(1): 101-106. |
[6] | ZHANG Cencen, WANG Xue, PENG Liangming. Thermoelectric Transport Characteristics of n-type (PbTe)1-x-y(PbS)x(Sb2Se3)y Systems via Stepwise Addition of Dual Components [J]. Journal of Inorganic Materials, 2021, 36(9): 936-942. |
[7] | YANG Qingyu, QIU Pengfei, SHI Xun, CHEN Lidong. Application of Entropy Engineering in Thermoelectrics [J]. Journal of Inorganic Materials, 2021, 36(4): 347-354. |
[8] | KANG Huijun,ZHANG Xiaoying,WANG Yanxia,LI Jianbo,YANG Xiong,LIU Daquan,YANG Zerong,WANG Tongmin. Effect of Rare-earth Variable-valence Element Eu doping on Thermoelectric Property of BiCuSeO [J]. Journal of Inorganic Materials, 2020, 35(9): 1041-1046. |
[9] | QIU Xiaoxiao,ZHOU Xiying,FU Yuntian,SUN Xiaomeng,WANG Lianjun,JIANG Wan. Influence of Ge1-xInxTe Microstructure on Thermoelectric Properties [J]. Journal of Inorganic Materials, 2020, 35(8): 916-922. |
[10] | LI Xin, XI Li-Li, YANG Jiong. First Principles High-throughput Research on Thermoelectric Materials: a Review [J]. Journal of Inorganic Materials, 2019, 34(3): 236-246. |
[11] | LUO Jun, HE Shi-Yang, LI Zhi-Li, LI Yong-Bo, WANG Feng, ZHANG Ji-Ye. Progress on High-throughput Synthesis and Characterization Methods for Thermoelectric Materials [J]. Journal of Inorganic Materials, 2019, 34(3): 247-259. |
[12] | SHEN Jia-Jun, FANG Teng, FU Tie-Zheng, XIN Jia-Zhan, ZHAO Xin-Bing, ZHU Tie-Jun. Lattice Thermal Conductivity in Thermoelectric Materials [J]. Journal of Inorganic Materials, 2019, 34(3): 260-268. |
[13] | YU Guan-Ting, XIN Jia-Zhan, ZHU Tie-Jun, ZHAO Xin-Bing. Thermoelectric Property of Zn-Sb Doped Mg2(Si,Sn) Alloys [J]. Journal of Inorganic Materials, 2019, 34(3): 310-314. |
[14] | HUANG Zhi-Cheng, YAO Yao, PEI Jun, DONG Jin-Feng, ZHANG Bo-Ping, LI Jing-Feng, SHANG Peng-Peng. Preparation and Thermoelectric Property of n-type SnS [J]. Journal of Inorganic Materials, 2019, 34(3): 321-327. |
[15] | GONG Hao, SU Xian-Li, YAN Yong-Gao, TANG Xin-Feng. Ultra-fast Synthesis of Cu2S Thermoelectric Materials under Pulsed Electric Field [J]. Journal of Inorganic Materials, 2019, 34(12): 1295-1300. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||