Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (3): 328-334.DOI: 10.15541/jim20180261
Previous Articles Next Articles
WANG Wei1, LUO Shi-Jie1, XIAN Cong1, XIAO Qun1, YANG Yang2, OU Yun3, LIU Yun-Ya1, XIE Shu-Hong4
Received:
2018-06-11
Published:
2019-03-20
Online:
2019-02-26
About author:
WANG Wei (1988?), male, candidate of PhD. E-mail: yuhong138@163.com
Supported by:
CLC Number:
WANG Wei, LUO Shi-Jie, XIAN Cong, XIAO Qun, YANG Yang, OU Yun, LIU Yun-Ya, XIE Shu-Hong. Enhanced Thermoelectric Properties of Hydrothermal Synthesized BiCl3/Bi2S3 Composites[J]. Journal of Inorganic Materials, 2019, 34(3): 328-334.
Fig. 1 XRD patterns (a) and the enlarged patterns of 2θ in the range of 24°-32.5°(b) with peaks of crystal plane (211) in the inset for BiCl3/Bi2S3 powders with different xmol% (x= 0, 0.25, 0.5, and 1.0) BiCl3
Fig. 2 SEM images of Bi2S3 powders (a), fractured surfaces of SPSed samples of Bi2S3 doped with xmol% BiCl3 ((b) x=0, (c) x=0.25, (d) x=0.5, (e) x=1.0); TEM images of sintered samples of Bi2S3 doped with xmol% BiCl3 ((f) x=0, (h) x=1.0); HRTEM image of Bi2S3 powder after SPS (g)
Fig. 3 SEM image of the fractured surfaces of Bi2S3 doped with 1.0mol% BiCl3 bulk after SPS (a), corresponding elemental mappings of Bi, S and Cl (b-d)
Sample | ρ/% | S/(µV·K-1) | σ/(S·cm-1) | PF/(μW·m-1·K-2) | κ/(W·m-1·K-1) | ZT |
---|---|---|---|---|---|---|
Bi2S3 | 89% | -326.0 | 12.9 | 136.9 | 0.47 | 0.22 |
Bi2S3+0.25% BiCl3 | 90% | -304.0 | 27.6 | 255.0 | 0.31 | 0.63 |
Bi2S3+0.5% BiCl3 | 89% | -279.0 | 45.1 | 350.2 | 0.58 | 0.46 |
Bi2S3+1.0% BiCl3 | 92% | -273.5 | 25.4 | 189.7 | 0.49 | 0.30 |
Table 1 Thermoelectric performance of BiCl3/Bi2S3 samples at 762 K
Sample | ρ/% | S/(µV·K-1) | σ/(S·cm-1) | PF/(μW·m-1·K-2) | κ/(W·m-1·K-1) | ZT |
---|---|---|---|---|---|---|
Bi2S3 | 89% | -326.0 | 12.9 | 136.9 | 0.47 | 0.22 |
Bi2S3+0.25% BiCl3 | 90% | -304.0 | 27.6 | 255.0 | 0.31 | 0.63 |
Bi2S3+0.5% BiCl3 | 89% | -279.0 | 45.1 | 350.2 | 0.58 | 0.46 |
Bi2S3+1.0% BiCl3 | 92% | -273.5 | 25.4 | 189.7 | 0.49 | 0.30 |
Fig. 4 Temperature dependence of thermoelectric performances for BiCl3/Bi2S3 composite samples (a) Seebeck coefficient; (b) Electrical conductivity; (c) Power factor; (d) Total thermal conductivity; (e) Lattice thermal conductivity; (f) Figure of merit (ZT)
Sample | Bi2S3 | Bi2S3+0.25% BiCl3 | Bi2S3+0.5% BiCl3 | Bi2S3+1.0% BiCl3 |
---|---|---|---|---|
Carrierconcentration/(×1015, cm-3) | 1.82 | 2.13 | 4.31 | 6.83 |
Table 2 Carrier concentration of BiCl3/Bi2S3 samples at room temperature
Sample | Bi2S3 | Bi2S3+0.25% BiCl3 | Bi2S3+0.5% BiCl3 | Bi2S3+1.0% BiCl3 |
---|---|---|---|---|
Carrierconcentration/(×1015, cm-3) | 1.82 | 2.13 | 4.31 | 6.83 |
[1] | PEI Y, SHI X, LALONDE A, et al.Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 2011, 473(7345): 66-69. |
[2] | BELL L E.Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008, 321(5895): 1457-1461. |
[3] | DISALVO F J.Thermoelectric cooling and power generation. Science, 1999, 285(5428): 703-706. |
[4] | LI J F, LIU W S, ZHAO L D, et al.High-performance nanostructured thermoelectric materials. NPG Asia Materials, 2010, 2(4): 152-158. |
[5] | SNYDER G J, TOBERER E S.Complex thermoelectric materials. Nature Materials, 2008, 7(2): 105-114. |
[6] | YANG Y, MA F Y, LEI C H, et al. Is thermoelectric conversion efficiency of a composite bounded by its constituents? Applied Physics Letters, 2013, 102(5): 053905-1-4. |
[7] | YANG Y, XIE S H, MA F Y, et al. On the effective thermoelectric properties of layered heterogeneous medium. Journal of Applied Physics, 2012, 111(1): 013510-1-7. |
[8] | KIM W, ZIDE J, GOSSARD A, et al. Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Physical Review Letters,2006, 96(4): 045901-1-4. |
[9] | MUTA H, IEDA A, KUROSAKI K, et al.Substitution effect on the thermoelectric properties of alkaline earth titanate. MaterialsLetters,2004, 58(30): 3868-3871. |
[10] | NASR ESFAHANI E, MA F, WANG S, et al.Quantitative nanoscale mapping of three-phase thermal conductivities in filled skutterudites via scanning thermal microscopy. National Science Review, 2017, 5(1): 59-69. |
[11] | LIU Y, CHEN L, LI J.Precipitate morphologies of pseudobinary Sb2Te3-PbTe thermoelectric compounds. Acta Materialia, 2014, 65: 308-315. |
[12] | YANG Y, MA F Y, LEI C H, et al.Nonlinear asymptotic homogenization and the effective behavior of layered thermoelectric composites. Journal of the Mechanics and Physics of Solids, 2013, 61(8): 1768-1783. |
[13] | WANG C, NIU Y, JIANG J, et al.Hybrid thermoelectric battery electrode FeS2 study. Nano Energy, 2018, 45: 432-438. |
[14] | DUGHAISH Z H.Lead telluride as a thermoelectric material for thermoelectric power generation. Physica B: Condensed Matter, 2002, 322(1/2): 205-223. |
[15] | HEREMANS J P, JOVOVIC V, TOBERER E S, et al.Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science, 2008, 321(5888): 554-557. |
[16] | POUDEL B, HAO Q, MA Y, et al.High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science, 2008, 320(5876): 634-638. |
[17] | CAO Y Q, ZHAO X B, ZHU T J, et al. Syntheses and thermoelectric properties of Bi2Te3/Sb2Te3 bulk nanocomposites with laminated nanostructure. Applied Physics Letters,2008, 92(14): 143106-1-3. |
[18] | CANTARERO A, MARTINEZ-PASTOR J, SEGURA A, et al.Transport properties of bismuth sulfide single crystals. Physical Review B, 1987, 35(18): 9586-9590. |
[19] | BISWAS K, ZHAO L D, KANATZIDIS M G.Tellurium-free thermoelectric: the anisotropic n-type semiconductor Bi2S3. Advanced Energy Materials, 2012, 2(6): 634-638. |
[20] | LIU W, GUO C F, YAO M, et al.Bi2S3 nanonetwork as precursor for improved thermoelectric performance. Nano Energy, 2014, 4: 113-122. |
[21] | CHEN B, UHER C, IORDANIDIS L, et al.Transport properties of Bi2S3 and the ternary bismuth sulfides KBi6.33S10 and K2Bi8S13. Chemistry of Materials, 1997, 9(7): 1655-1658. |
[22] | LIUFU S C, CHEN L D, YAO Q, et al. Assembly of one-dimensional nanorods into Bi2S3 films with enhanced thermoelectric transport properties. Applied Physics Letters,2007, 90(11): 112106-1-3. |
[23] | GE Z H, ZHANG B P, LIU Y, et al.Nanostructured Bi2-xCuxS3 bulk materials with enhanced thermoelectric performance. Physical Chemistry Chemical Physics, 2012, 14(13): 4475-4481. |
[24] | YU Y Q, ZHANG B P, GE Z H, et al.Thermoelectric properties of Ag-doped bismuth sulfide polycrystals prepared by mechanical alloying and spark plasma sintering. Materials Chemistry and Physics,2011, 131(1/2): 216-222. |
[25] | DU X, CAI F, WANG X.Enhanced thermoelectric performance of chloride doped bismuth sulfide prepared by mechanical alloying and spark plasma sintering. Journal of Alloys and Compounds, 2014, 587: 6-9. |
[26] | YANG X X, ZHOU Z F, WANG Y, et al. Raman spectroscopy determination of the Debye temperature and atomic cohesive energy of CdS, CdSe, Bi2Se3,Sb2Te3 nanostructures. Journal of Applied Physics, 2012, 112(8): 083508-1-6. |
[27] | PHURUANGRAT A, THONGTEM T, THONGTEM S.Characterization of Bi2S3 nanorods and nano-structured flowers prepared by a hydrothermal method. Materials Letters, 2009, 63(17): 1496-1498. |
[28] | ZHAO L D, ZHANG B P, LIU W S, et al.Enhanced thermoelectric properties of bismuth sulfide polycrystals prepared by mechanical alloying and spark plasma sintering. Journal of Solid State Chemistry, 2008, 181(12): 3278-3282. |
[29] | ZHAO L D, LO S H, ZHANG Y, et al.Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 2014, 508(7496): 373-377. |
[30] | HAN Y M, ZHAO J, ZHOU M, et al.Thermoelectric performance of SnS and SnS-SnSe solid solution. Journal of Materials Chemistry A, 2015, 3(8): 4555-4559. |
[31] | TAN G, ZHAO L D, KANATZIDIS M G.Rationally designing high-performance bulk thermoelectric materials. Chemical Reviews, 2016, 116(19): 12123-12149. |
[32] | GE Z H, QIN P, HE D S, et al.Highly enhanced thermoelectric properties of Bi/Bi2S3 nanocomposites. ACS Applied Materials & Interfaces, 2017, 9(5): 4828-4834. |
[33] | YANG J, LIU G, YAN J, et al.Enhanced the thermoelectric properties of n-type Bi2S3 polycrystalline by iodine doping. Journal of Alloys and Compounds, 2017, 728: 351-356. |
[34] | ZHANG L J, ZHANG B P, GE Z H, et al.Fabrication and properties of Bi2S3-xSex thermoelectric polycrystals. Solid State Communications, 2013, 162: 48-52. |
[1] | WANG Bo, YU Jian, LI Cuncheng, NIE Xiaolei, ZHU Wanting, WEI Ping, ZHAO Wenyu, ZHANG Qingjie. Service Stability of Gd/Bi0.5Sb1.5Te3 Thermo-electro-magnetic Gradient Composites [J]. Journal of Inorganic Materials, 2023, 38(6): 663-670. |
[2] | HE Danqi, WEI Mingxu, LIU Ruizhi, TANG Zhixin, ZHAI Pengcheng, ZHAO Wenyu. Heavy-Fermion YbAl3 Materials: One-step Synthesis and Enhanced Thermoelectric Performance [J]. Journal of Inorganic Materials, 2023, 38(5): 577-582. |
[3] | LIN Siqi, LI Airan, FU Chenguang, LI Rongbing, JIN Min. Crystal Growth and Thermoelectric Properties of Zintl Phase Mg3X2 (X=Sb, Bi) Based Materials: a Review [J]. Journal of Inorganic Materials, 2023, 38(3): 270-279. |
[4] | HUA Siheng, YANG Dongwang, TANG Hao, YUAN Xiong, ZHAN Ruoyu, XU Zhuoming, LYU Jianan, XIAO Yani, YAN Yonggao, TANG Xinfeng. Effect of Surface Treatment of n-type Bi2Te3-based Materials on the Properties of Thermoelectric Units [J]. Journal of Inorganic Materials, 2023, 38(2): 163-169. |
[5] | YAO Yishuai, GUO Ruihua, AN Shengli, ZHANG Jieyu, CHOU Kuochih, ZHANG Guofang, HUANG Yarong, PAN Gaofei. In-situ Loaded Pt-Co High Index Facets Catalysts: Preparation and Electrocatalytic Performance [J]. Journal of Inorganic Materials, 2023, 38(1): 71-78. |
[6] | WANG Pengjiang, KANG Huijun, YANG Xiong, LIU Ying, CHENG Cheng, WANG Tongmin. Inhibition of Lattice Thermal Conductivity of ZrNiSn-based Half-Heusler Thermoelectric Materials by Entropy Adjustment [J]. Journal of Inorganic Materials, 2022, 37(7): 717-723. |
[7] | CHENG Cheng, LI Jianbo, TIAN Zhen, WANG Pengjiang, KANG Huijun, WANG Tongmin. Thermoelectric Property of In2O3/InNbO4 Composites [J]. Journal of Inorganic Materials, 2022, 37(7): 724-730. |
[8] | LOU Xunuo, DENG Houquan, LI Shuang, ZHANG Qingtang, XIONG Wenjie, TANG Guodong. Thermal and Electrcial Transport Properities of Ge Doped MnTe Thermoelectrics [J]. Journal of Inorganic Materials, 2022, 37(2): 209-214. |
[9] | LIU Dan, ZHAO Yaxin, GUO Rui, LIU Yantao, ZHANG Zhidong, ZHANG Zengxing, XUE Chenyang. Effect of Annealing Conditions on Thermoelectric Properties of Magnetron Sputtered MgO-Ag3Sb-Sb2O4 Flexible Films [J]. Journal of Inorganic Materials, 2022, 37(12): 1302-1310. |
[10] | REN PeiAn, WANG Cong, ZI Peng, TAO Qirui, SU Xianli, TANG Xinfeng. Effect of Te and In Co-doping on Thermoelectric Properties of Cu2SnSe3 Compounds [J]. Journal of Inorganic Materials, 2022, 37(10): 1079-1086. |
[11] | ZHANG Xian, ZHANG Ce, JIANG Wenjun, FENG Deqiang, YAO Wei. Synthesis, Electronic Structure and Visible Light Photocatalytic Performance of Quaternary BiMnVO5 [J]. Journal of Inorganic Materials, 2022, 37(1): 58-64. |
[12] | JIN Min, BAI Xudong, ZHANG Rulin, ZHOU Lina, LI Rongbin. Metal Sulfide Ag2S: Fabrication via Zone Melting Method and Its Thermoelectric Property [J]. Journal of Inorganic Materials, 2022, 37(1): 101-106. |
[13] | YANG Dongwang, LUO Tingting, SU Xianli, WU Jinsong, TANG Xinfeng. Unveiling the Intrinsic Low Thermal Conductivity of BiAgSeS through Entropy Engineering in SHS Kinetic Process [J]. Journal of Inorganic Materials, 2021, 36(9): 991-998. |
[14] | ZHANG Cencen, WANG Xue, PENG Liangming. Thermoelectric Transport Characteristics of n-type (PbTe)1-x-y(PbS)x(Sb2Se3)y Systems via Stepwise Addition of Dual Components [J]. Journal of Inorganic Materials, 2021, 36(9): 936-942. |
[15] | LU Xu, HOU Jichong, ZHANG Qiang, FAN Jianfeng, CHEN Shaoping, WANG Xiaomin. Effect of Mg Content on Thermoelectric Property of Mg3(1+z)Sb2 Compounds [J]. Journal of Inorganic Materials, 2021, 36(8): 835-840. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||