Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (3): 301-309.DOI: 10.15541/jim20180295
Previous Articles Next Articles
ZHOU Yi-Ming1, ZHOU Yu-Ling2, PANG Qian-Tao3, SHAO Jian-Wei4, ZHAO Li-Dong1
Received:
2018-07-02
Revised:
2018-07-25
Published:
2019-03-20
Online:
2019-02-26
About author:
ZHOU Yi-Ming. E-mail: zhouym@buaa.edu.cn
Supported by:
CLC Number:
ZHOU Yi-Ming, ZHOU Yu-Ling, PANG Qian-Tao, SHAO Jian-Wei, ZHAO Li-Dong. Different Doping Sites of Ag on Cu2SnSe3 and Their Thermoelectric Property[J]. Journal of Inorganic Materials, 2019, 34(3): 301-309.
Fig. 2 Temperature dependence of thermoelectric properties of Cu2Sn1-xAgxSe3 (x = 0-0.07)(a) Electrical conductivity; (b) Seebeck coefficient; (c) Power factor; (d) Total thermal conductivity; (e) Lattice thermal conductivity; (f) Thermoelectric figure of merit (ZT)
y | a/nm | b/nm | c/nm | β/(°) | V/nm3 |
---|---|---|---|---|---|
0 | 0.69919 | 1.20763 | 0.69667 | 109.26 | 0.55533 |
0.01 | 0.69714 | 1.20586 | 0.69671 | 109.20 | 0.55310 |
0.03 | 0.69812 | 1.20641 | 0.69551 | 109.21 | 0.55314 |
0.05 | 0.69973 | 1.20578 | 0.69819 | 109.47 | 0.55539 |
0.07 | 0.70011 | 1.20749 | 0.70033 | 109.47 | 0.55817 |
0.09 | 0.70019 | 1.21247 | 0.69674 | 109.46 | 0.55772 |
Table 1 Lattice parameters and average volume of unit cell of Cu2-yAgySnSe3
y | a/nm | b/nm | c/nm | β/(°) | V/nm3 |
---|---|---|---|---|---|
0 | 0.69919 | 1.20763 | 0.69667 | 109.26 | 0.55533 |
0.01 | 0.69714 | 1.20586 | 0.69671 | 109.20 | 0.55310 |
0.03 | 0.69812 | 1.20641 | 0.69551 | 109.21 | 0.55314 |
0.05 | 0.69973 | 1.20578 | 0.69819 | 109.47 | 0.55539 |
0.07 | 0.70011 | 1.20749 | 0.70033 | 109.47 | 0.55817 |
0.09 | 0.70019 | 1.21247 | 0.69674 | 109.46 | 0.55772 |
Fig. 4 Temperature dependence of thermoelectric properties of Cu2-yAgySnSe3 (y=0-0.09)(a) Electrical conductivity; (b) Seebeck coefficient; (c) Power factor; (d) Total thermal conductivity;(e) Lattice thermal conductivity; (f) Thermoelectric figure of merit (ZT)
Fig. 5 Temperature dependence of thermoelectric properties of composites of Cu2Sn0.93Ag0.07Se3 and Cu1.91Ag0.09SnSe3(a) Electrical conductivity; (b) Seebeck coefficient; (c) Power factor; (d) Total thermal conductivity;(e) Lattice thermal conductivity; (f) Thermoelectric figure of merit (ZT)
[1] | TAN G, ZHAO LD, KANATZIDIS M G.Rationally designing high-performance bulk thermoelectric materials. Chemical Reviews, 2016,116(19):12123-12149. |
[2] | COHN J L, NOLAS G S, FESSATIDIS V, et al.Glass-like heat conduction in high-mobility crystalline semiconductors. Physical Review Letters,1999,82(4):779-782. |
[3] | PEI Y, SHI X, LALONDE A, et al.Convergence of electronic bands for high performance bulk thermoelectrics. Nature,2011,473(7345):66-69. |
[4] | ZHAO W, LIU Z, SUN Z, et al.Superparamagnetic enhancement of thermoelectric performance. Nature,2017, 549(7671): 247-251. |
[5] | TAN G J, SHI F Y, HAO S Q, et al.Valence band modification and high thermoelectric performance in SnTe heavily alloyed with MnTe. Journal of the American Chemical Society, 2015, 137(35): 11507-11516. |
[6] | BISWAS K, HE J, BLUM I D, et al.High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature,2012,489(7416): 414-418. |
[7] | XIAO Y, WU H J, LI W, et al.Remarkable roles of Cu to synergistically optimize phonon and carrier transport in n-type PbTe-Cu2Te. Journal of the American Chemical Society, 2017, 139(51): 18732-18738. |
[8] | WU C F, WEI T R, SUN F H, et al. Nanoporous PbSe-SiO2 thermoelectric composites. Advanced Science,2017,4(11):1700199-1-7. |
[9] | SU X, WEI P, LI H, et al. Multi-scale microstructural thermoelectric materials: transport behavior, non-equilibrium preparation,applications. Advanced Materials,2017,29(20):1602013-1-13. |
[10] | ZHAO LD, LO SH, HE J, et al.High performance thermoelectrics from earth-abundant materials: enhanced figure of merit in PbS by second phase nanostructures. Journal of the American Chemical Society,2011,133(50):20476-20487. |
[11] | ZHAO LD, LO SH, ZHANG Y, et al.Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature,2014,508(7496):373-377. |
[12] | ZHAO L D, TAN G J, HAO S Q, et al.Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science, 2016,351(6269):141-144. |
[13] | CHANG C, WU M H, HE D S, et al.3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals. Science,2018, 360(6390): 778-782. |
[14] | SHI X, XI L, FAN J, et al.Cu-Se bond network and thermoelectric compounds with complex diamondlike structure. Chemistry of Materials,2010,22(22): 6029-6031. |
[15] | FAN J, CARRILLO-CABRERA W, AKSELRUD L, et al.New monoclinic phase at the composition Cu2SnSe3 and its thermoelectric properties. Inorganic Chemistry,2013,52(19):11067-11074. |
[16] | PRASAD K S, RAO A, TYAGI K, et al.Enhanced thermoelectric performance of Pb doped Cu2SnSe3 synthesized employing spark plasma sintering. Physica B-Condensed Matter, 2017,512(1):39-44. |
[17] | LI Y, LIU G, LI J, et al.High thermoelectric performance of In-doped Cu2SnSe3 prepared by fast combustion synthesis. New Journal of Chemistry, 2016,40(6):5394-5400. |
[18] | LU X, MORELLI D T.Thermoelectric properties of Mn-doped Cu2SnSe3. Journal of Electronic Materials,2012,41(6):1554-1558. |
[19] | LI Y, LIU G, CAO T, et al.Enhanced thermoelectric properties of Cu2SnSe3 by (Ag,In)-Co-doping. Advanced Functional Materials, 2016,26(33): 6025-6032. |
[20] | DELGADO G, MORA A, MARCANO G, et al.Crystal structure refinement of the semiconducting compound Cu2SnSe3 from X-ray powder diffraction data. Materials Research Bulletin,2003,38(15):1949-1955. |
[21] | FAN J, SCHNELLE W, ANTONYSHYN I, et al.Structural evolvement and thermoelectric properties of Cu3-xSnxSe3 compounds with diamond-like crystal structures. Dalton Transactions,2014,43(44): 16788-16794. |
[22] | PENG K, LU X, ZHAN H, et al.Broad temperature plateau for high ZTS in heavily doped p-type SnSe single crystals. Energy & Environmental Science,2016,9(2): 454-460. |
[23] | NAN CW.Physics of inhomogeneous inorganic materials. Progress in Materials Science,1993, 37(1):1-116. |
[24] | ZHANG B, SUN J, KATZ H E, et al.Promising thermoelectric properties of commercial PEDOT:PSS materials and their Bi2Te3 powder composites. ACS Applied Materials & Interfaces,2010,2(11):3170-3178. |
[25] | ZHOU Y M, WU H J, PEI Y L, et al.Strategy to optimize the overall thermoelectric properties of SnTe via compositing with its property-counter CuInTe2.Acta Materialia, 2017,125: 542-549. |
[1] | WANG Bo, YU Jian, LI Cuncheng, NIE Xiaolei, ZHU Wanting, WEI Ping, ZHAO Wenyu, ZHANG Qingjie. Service Stability of Gd/Bi0.5Sb1.5Te3 Thermo-electro-magnetic Gradient Composites [J]. Journal of Inorganic Materials, 2023, 38(6): 663-670. |
[2] | HE Danqi, WEI Mingxu, LIU Ruizhi, TANG Zhixin, ZHAI Pengcheng, ZHAO Wenyu. Heavy-Fermion YbAl3 Materials: One-step Synthesis and Enhanced Thermoelectric Performance [J]. Journal of Inorganic Materials, 2023, 38(5): 577-582. |
[3] | LIN Siqi, LI Airan, FU Chenguang, LI Rongbing, JIN Min. Crystal Growth and Thermoelectric Properties of Zintl Phase Mg3X2 (X=Sb, Bi) Based Materials: a Review [J]. Journal of Inorganic Materials, 2023, 38(3): 270-279. |
[4] | HUA Siheng, YANG Dongwang, TANG Hao, YUAN Xiong, ZHAN Ruoyu, XU Zhuoming, LYU Jianan, XIAO Yani, YAN Yonggao, TANG Xinfeng. Effect of Surface Treatment of n-type Bi2Te3-based Materials on the Properties of Thermoelectric Units [J]. Journal of Inorganic Materials, 2023, 38(2): 163-169. |
[5] | WANG Pengjiang, KANG Huijun, YANG Xiong, LIU Ying, CHENG Cheng, WANG Tongmin. Inhibition of Lattice Thermal Conductivity of ZrNiSn-based Half-Heusler Thermoelectric Materials by Entropy Adjustment [J]. Journal of Inorganic Materials, 2022, 37(7): 717-723. |
[6] | CHENG Cheng, LI Jianbo, TIAN Zhen, WANG Pengjiang, KANG Huijun, WANG Tongmin. Thermoelectric Property of In2O3/InNbO4 Composites [J]. Journal of Inorganic Materials, 2022, 37(7): 724-730. |
[7] | LOU Xunuo, DENG Houquan, LI Shuang, ZHANG Qingtang, XIONG Wenjie, TANG Guodong. Thermal and Electrcial Transport Properities of Ge Doped MnTe Thermoelectrics [J]. Journal of Inorganic Materials, 2022, 37(2): 209-214. |
[8] | LIU Dan, ZHAO Yaxin, GUO Rui, LIU Yantao, ZHANG Zhidong, ZHANG Zengxing, XUE Chenyang. Effect of Annealing Conditions on Thermoelectric Properties of Magnetron Sputtered MgO-Ag3Sb-Sb2O4 Flexible Films [J]. Journal of Inorganic Materials, 2022, 37(12): 1302-1310. |
[9] | REN PeiAn, WANG Cong, ZI Peng, TAO Qirui, SU Xianli, TANG Xinfeng. Effect of Te and In Co-doping on Thermoelectric Properties of Cu2SnSe3 Compounds [J]. Journal of Inorganic Materials, 2022, 37(10): 1079-1086. |
[10] | JIN Min, BAI Xudong, ZHANG Rulin, ZHOU Lina, LI Rongbin. Metal Sulfide Ag2S: Fabrication via Zone Melting Method and Its Thermoelectric Property [J]. Journal of Inorganic Materials, 2022, 37(1): 101-106. |
[11] | YANG Dongwang, LUO Tingting, SU Xianli, WU Jinsong, TANG Xinfeng. Unveiling the Intrinsic Low Thermal Conductivity of BiAgSeS through Entropy Engineering in SHS Kinetic Process [J]. Journal of Inorganic Materials, 2021, 36(9): 991-998. |
[12] | ZHANG Cencen, WANG Xue, PENG Liangming. Thermoelectric Transport Characteristics of n-type (PbTe)1-x-y(PbS)x(Sb2Se3)y Systems via Stepwise Addition of Dual Components [J]. Journal of Inorganic Materials, 2021, 36(9): 936-942. |
[13] | LU Xu, HOU Jichong, ZHANG Qiang, FAN Jianfeng, CHEN Shaoping, WANG Xiaomin. Effect of Mg Content on Thermoelectric Property of Mg3(1+z)Sb2 Compounds [J]. Journal of Inorganic Materials, 2021, 36(8): 835-840. |
[14] | CAI Jianfeng, WANG Hongxiang, LIU Guoqiang, JIANG Jun. Designing High Entropy Structure in Thermoelectrics [J]. Journal of Inorganic Materials, 2021, 36(4): 399-404. |
[15] | YANG Qingyu, QIU Pengfei, SHI Xun, CHEN Lidong. Application of Entropy Engineering in Thermoelectrics [J]. Journal of Inorganic Materials, 2021, 36(4): 347-354. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||