Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (3): 294-300.DOI: 10.15541/jim20180303
Previous Articles Next Articles
LI Zhou1, XIAO Chong2
Received:
2018-07-04
Revised:
2018-11-28
Published:
2019-03-20
Online:
2019-02-26
Supported by:
CLC Number:
LI Zhou, XIAO Chong. Optimizing Electrical and Thermal Transport Property in BiCuSeO Superlattice via Heterolayer-isovalent Dual-doping Approach[J]. Journal of Inorganic Materials, 2019, 34(3): 294-300.
Fig. 4 Temperature-dependent electrical conductivity (a), Seebeck coefficient (b) and power factor of Bi1-xLaxCu1-yAgySeO samples; (d) Carrier concentration and mobility at 300K
Fig. 5 Temperature-dependent total thermal conductivity (a), electrical and lattice thermal conductivities (b), percentage of electrical thermal conductivity (c) and dimensionless thermoelectric figure of merit (d) for Bi1-xLaxCu1-yAgySeO samples
Fig. 6 Electrical band structure (a) and UV-Vis absorption spectra(b) of Bi1-xLaxCu1-yAgySeO samples, (c) Schematic representation of the convergence of heavy-light bands
[1] | DRESSELHAUS·M S, THOMAS I L. Alternative energy technologies.Nature, 2001, 414(6861): 332-337. |
[2] | CHU S, MAJUMDAR A.Opportunities and challenges for a sustainable energy future.Nature, 2012, 488(7411): 294-303. |
[3] | ARMSTRONG R C, WOLFRAM C, DE JONG K P,et al. The frontiers of energy. Nat. Energy, 2016, 1(1): 15020. |
[4] | ZEIER W G, SCHMITT J, HAUTIER G, ,et al. Engineering half-Heusler thermoelectric materials using Zintl chemistry. Nat. Rev. Mater., 2016, 1(6): 16032-1-10. |
[5] | RULL-BRAVO M, MOURE A, FERNANDEZ J F,et al. Skutterudites as thermoelectric materials: revisited. RSC Adv., 2015, 5(52): 41653-41667. |
[6] | FITRIANI, OVIK R, LONG B D,et al. A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery. Renewable Sustainable Energy Rev., 2016, 64: 635-659. |
[7] | SOOTSMAN J R, CHUNG D Y, KANATZIDIS·M G. New and old concepts in thermoelectric materials.Angew. Chem. Int. Ed., 2009, 48(46): 8616-8639. |
[8] | XIAO C, LI Z, LI K,et al. Decoupling interrelated parameters for designing high performance thermoelectric materials. Acc. Chem. Res., 2014, 47(4): 1287-1295. |
[9] | URBAN J J.Prospects for thermoelectricity in quantum dot hybrid arrays. Nat. Nanotechnol., 2015, 10(12): 997-1001. |
[10] | BEEKMAN M, MORELLI D T, NOLAS G S.Better thermoelectrics through glass-like crystals. Nat. Mater., 2015, 14(12): 1182-1185. |
[11] | SNYDER G J, TOBERER E S.Complex thermoelectric materials. Nat. Mater., 2008, 7(2):105-114. |
[12] | TAN G, ZHAO L D, KANATZIDIS·M G. Rationally designing high-performance bulk thermoelectric materials. Chem. Rev., 2016, 116(19): 12123-12149. |
[13] | HICKS L D, DRESSELHAUS·M S. Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B, 1993, 47(19): 12727-12731. |
[14] | OHTA H, KIM S W, MUNE Y,et al. Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nat. Mater., 2007, 6(2): 129-134. |
[15] | SUN Y, CHENG H, GAO S,et al. Atomically thick bismuth selenide freestanding single layers achieving enhanced thermoelectric energy harvesting. J. Am. Chem. Soc., 2012, 134(50): 20294-20297. |
[16] | LIU Y, ZHAO L D, LIU Y,et al. Remarkable enhancement in thermoelectric performance of BiCuSeO by Cu deficiencies. J. Am. Chem. Soc., 2011, 133(50): 20112-20115. |
[17] | ZHANG X, CHANG C, ZHOU Y,et al. BiCuSeO thermoelectrics: an update on recent progress and perspective. Materials, 2017, 10(2): 198. |
[18] | ZHAO L D, HE J, BERARDAN D,et al. BiCuSeO oxyselenides: new promising thermoelectric materials. Energy Environ. Sci., 2014, 7(9): 2900-2924. |
[19] | LI J, SUI J, PEI Y,et al. A high thermoelectric figure of merit ZT>1 in Ba heavily doped BiCuSeO oxyselenides. Energy Environ. Sci., 2012, 5(9): 8543-8547. |
[20] | LI Z, XIAO C, FAN S,et al. Dual vacancies: an effective strategy realizing synergistic optimization of thermoelectric property in BiCuSeO. J. Am. Chem. Soc., 2015, 137(20): 6587-6593. |
[21] | LIU Y, ZHAO L D, ZHU Y, ,et al. Synergistically optimizing electrical. Synergistically optimizing electrical and thermal transport properties of BiCuSeO viaa dual- doping approach. Adv. Energy Mater., 2016, 6(9): 1502423-1-9. |
[22] | HEREMANS J P, JOVOVIC V, TOBERER E S,et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science, 2008, 321(5888): 554-557. |
[23] | XIAO C, XU J, CAO B,et al. Solid-solutioned homojunction nanoplates with disordered lattice: a promising approach toward “phonon glass electron crystal” thermoelectric materials. J. Am. Chem. Soc., 2012, 134(18): 7971-7977. |
[24] | WU H J, ZHAO L D, ZHENG F S, et al. Broad temperature plateau for thermoelectric figure of merit ZT>2 in phase-separated PbTe0.7S0.3. Nat. Commun., 2014, 5: 4515-1-9. |
[25] | ZHAO L D, ZHANG X, WU H,et al. Enhanced thermoelectric properties in the counter-doped SnTe system with strained endotaxial SrTe. J. Am. Chem. Soc., 2016, 138(7): 2366-2373. |
[26] | MAHAN G D, BARTKOWIAK M.Wiedemann-Franz law at boundaries. Appl. Phys. Lett., 1999, 74(7): 953-954. |
[27] | LIU Y, DING J, XU B, ,et al. Enhanced thermoelectric performance of La-doped BiCuSeO by tuning band structure. Appl. Phys. Lett., 2015, 106(23): 233903-1-5. |
[28] | PEI Y, SHI X, LALONDE A,et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 2011, 473(7345): 66-69. |
[29] | BANIK A, SHENOY U S, ANAND S,et al. Mg alloying in SnTe facilitates valence band convergence and optimizes thermoelectric properties. Chem. Mater., 2015, 27(2): 581-587. |
[30] | TAN G, SHI F, HAO S,et al. Codoping in SnTe: enhancement of thermoelectric performance through synergy of resonance levels and band convergence. J. Am. Chem. Soc., 2015, 137(15): 5100-5112. |
[1] | LIN Siqi, LI Airan, FU Chenguang, LI Rongbing, JIN Min. Crystal Growth and Thermoelectric Properties of Zintl Phase Mg3X2 (X=Sb, Bi) Based Materials: a Review [J]. Journal of Inorganic Materials, 2023, 38(3): 270-279. |
[2] | CHENG Cheng, LI Jianbo, TIAN Zhen, WANG Pengjiang, KANG Huijun, WANG Tongmin. Thermoelectric Property of In2O3/InNbO4 Composites [J]. Journal of Inorganic Materials, 2022, 37(7): 724-730. |
[3] | LIU Dan, ZHAO Yaxin, GUO Rui, LIU Yantao, ZHANG Zhidong, ZHANG Zengxing, XUE Chenyang. Effect of Annealing Conditions on Thermoelectric Properties of Magnetron Sputtered MgO-Ag3Sb-Sb2O4 Flexible Films [J]. Journal of Inorganic Materials, 2022, 37(12): 1302-1310. |
[4] | REN PeiAn, WANG Cong, ZI Peng, TAO Qirui, SU Xianli, TANG Xinfeng. Effect of Te and In Co-doping on Thermoelectric Properties of Cu2SnSe3 Compounds [J]. Journal of Inorganic Materials, 2022, 37(10): 1079-1086. |
[5] | LU Xu, HOU Jichong, ZHANG Qiang, FAN Jianfeng, CHEN Shaoping, WANG Xiaomin. Effect of Mg Content on Thermoelectric Property of Mg3(1+z)Sb2 Compounds [J]. Journal of Inorganic Materials, 2021, 36(8): 835-840. |
[6] | YANG Xiao, SU Xianli, YAN Yonggao, TANG Xinfeng. Structures and Thermoelectric Properties of (GeTe)nBi2Te3 [J]. Journal of Inorganic Materials, 2021, 36(1): 75-80. |
[7] | KANG Huijun,ZHANG Xiaoying,WANG Yanxia,LI Jianbo,YANG Xiong,LIU Daquan,YANG Zerong,WANG Tongmin. Effect of Rare-earth Variable-valence Element Eu doping on Thermoelectric Property of BiCuSeO [J]. Journal of Inorganic Materials, 2020, 35(9): 1041-1046. |
[8] | LI Song-Hao, ZHANG Xin, LIU Hong-Liang, ZHENG Liang, ZHANG Jiu-Xing. Synthesis and Thermoelectric Properties of Ag-doped SnSe [J]. Journal of Inorganic Materials, 2016, 31(7): 751-755. |
[9] | WU Zi-Hua, XIE Hua-Qing, WANG Yuan-Yuan, MAO Jian-Hui, XING Jiao-Jiao, LI Yi-Huai. PPP Addition to Improve Thermoelectric Properties of ZnO-based Thermoelectric Composites [J]. Journal of Inorganic Materials, 2016, 31(11): 1249-1254. |
[10] | ZHAN Bin, LAN Jin-Le, LIU Yao-Chun, DING Jing-Xuan, LIN Yuan-Hua, NAN Ce-Wen. Research Progress of Oxides Thermoelectric Materials [J]. Journal of Inorganic Materials, 2014, 29(3): 237-244. |
[11] | WU Zi-Hua, XIE Hua-Qing, ZENG Qing-Feng. Thermoelectric Properties of Ni-doped ZnO Synthesized by Sol-Gel Processing [J]. Journal of Inorganic Materials, 2013, 28(9): 921-924. |
[12] | DU Bao-Li, LI Han, TANG Xin-Feng. Enhanced Thermoelectric Performance in Na/Se Doped p-type AgSbTe2 Compound [J]. Journal of Inorganic Materials, 2011, 26(7): 680-684. |
[13] | WANG Shan-Yu, XIE Wen-Jie, TANG Xin-Feng. Effects of Preparation Techniques on the Thermoelectric Properties and Pressive Strengths of n-type Bi2Te3 Based Materials [J]. Journal of Inorganic Materials, 2010, 25(6): 609-614. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||