Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (3): 247-259.DOI: 10.15541/jim20180335
Special Issue: 热电材料与器件
Previous Articles Next Articles
LUO Jun1,2, HE Shi-Yang1, LI Zhi-Li1, LI Yong-Bo1, WANG Feng1, ZHANG Ji-Ye1
Received:
2018-07-19
Revised:
2018-10-12
Published:
2019-03-20
Online:
2019-02-26
Supported by:
CLC Number:
LUO Jun, HE Shi-Yang, LI Zhi-Li, LI Yong-Bo, WANG Feng, ZHANG Ji-Ye. Progress on High-throughput Synthesis and Characterization Methods for Thermoelectric Materials[J]. Journal of Inorganic Materials, 2019, 34(3): 247-259.
Fig.6 (a) Scheme of a rotor with capsules for sedimentation experiment and (b) mechanism of sedimentation of atoms in the strong acceleration field[25]
Fig.7 (a) Optical image of the annealed Ti-Ni-Sn thin film materials library; (b-d) color-coded results of the high-throughput EDX measurements of the material library[27]
Fig.10 Composition trends over the sample library, (a) Si:Cu ratio for the glass-forming component, (b) glass transition temperature and (c) the total enthalpy of this glass reaction[35]
Fig.13 (a)Thermal conductivity imaging of a Cr-Ti diffusion couple and (b) numerical values for thermal conductivity across the path shown as a dashed line in (a)[40]
Fig. 15 Quantitative mapping of thermal conductivities, (a) changes in the probe resistance induced by samples with different thermal conductivities; Mappings of (b) resistance change and (c) corresponding thermal conductivities in Yb0.7Co4Sb12; (d) Line scan of resistance change across an interface between different phases[45]
Fig.16 (a) SEM image, (b) AFM topography image, and (c) thermal map image obtained with the SThM technique are shown simultaneously for the same area of the Ag2Se thin film[46]
Fig.22 (a) AFM topography image of Bi2Te3 thin film with 49 locations for nanoscale and (b) Seebeck voltage measurement, as indication by 49 dots in (a)[52]
[1] | WIDENER ANDREA.Materials genome initiative. Chem. Eng. News, 2013, 91(31): 25-27. |
[2] | RACCUGLIA PAUL, ELBERT KATHERINE C, ADLER PHILIP D F, et al. Machine-learning-assisted materials discovery using failed experiments. Nature, 2016, 533(7601): 73-75. |
[3] | HOCHBAUM ALLON I, CHEN RENKUN,DELGADO RAUL DIAZ, et al.Enhanced thermoelectric performance of rough silicon nanowires. Nature, 2008, 451(7175): 163-165. |
[4] | YOU LI, LIU YE-FENG, LI XIN, et al.Boosting the thermoelectric performance of PbSe through dynamic doping and hierarchical phonon scattering. Energy Environ. Sci., 2018, 11(7): 1848-1858. |
[5] | ZHU TIE-JUN, LIU YIN-TU, FU CHEN-GUANG, et al. Compromise and synergy in high-efficiency thermoelectric materials. Adv. Mater., 2017, 29(14): 1605884-1-26. |
[6] | PAN YU, AYDEMIR UMUT, GROVOGUI JANN A, et al. Melt-centrifuged (Bi,Sb)2Te3: engineering microstructure toward high thermoelectric efficiency. Adv. Mater., 2018, 30(34): 1802016-1-7. |
[7] | YU CUI, ZHU TIE-JUN, XIAO KAI, et al.Microstructure of ZrNiSn-base half-Heusler thermoelectric materials prepared by melt-spinning. [J].Inorg. Mater., 2010, 25(6): 569-572. |
[8] | LIU YIN-TU, FU CHEN-GUANG, XIA KAI-YANG, et al. Lanthanide contraction as a design factor for high-performance half-Heusler thermoelectric materials. Adv. Mater., 2018, 30(32): 1800881-1-7. |
[9] | YAO ZHENG, QIU PENG-FEI, LI XIAO-YA, et al.Investigation on quick fabrication of n-type filled Skutterudites.[J].Inorg. Mater., 2016, 31(12): 1375-1382. |
[10] | ZHANG JIA-WEI, LIU RUI-HENG, CHENG NIAN, et al.High- performance pseudocubic thermoelectric materials from non-cubic chalcopyrite compounds. Adv. Mater., 2014, 26(23): 3848-3853 |
[11] | BHATT RANU, BHATTACHARYA SHOVIT, BASU RANITA, et al.Enhanced thermoelectric properties of selenium-deficient layered TiSe2-x: a charge-density-wave material. ACS Appl. Mater. Interfaces,2014,6(21): 18619-18625. |
[12] | ZHAO LI-DONG, DRAVID VINAYAK P, KANATZIDIS MERCOURI G.The panoscopic approach to high performance thermoelectrics. Energy Environ. Sci., 2014, 7(1): 251-268. |
[13] | PEI YAN-ZHONG, HEINZ NICHOLAS A, AARON LALONDE, et al.Combination of large nanostructures and complex band structure for high performance thermoelectric lead telluride. Energy Environ. Sci., 2011, 4(9): 3640-3645. |
[14] | YAN Y G, MARTIN J, WONG-NG W, et al. A temperature dependent screening tool for high throughput thermoelectric characterization of combinatorial films. Rev. Sci. Instrum., 2013, 84(11): 115110-1-7. |
[15] | XIANG XIAO-DONG, SUN XIAO-DONG, BRICEÑO GABRIEL, et al. A combinatorial approach to materials discovery. Science, 1995, 268(5218): 1738-1740. |
[16] | FUJIMOTO K, KATO T, ITO S, et al.Development and application of combinatorial electrostatic atomization system “M-ist Combi”: high-throughput preparation of electrode materials. Solid State Ionics, 2006, 177(26-32): 2639-2642. |
[17] | FUJIMOTO KENJIRO, TAGUCHI TORU, SHOGO YOSHIDA, et al.Design of Seebeck coefficient measurement probe for powder library. ACS Comb. Sci., 2014, 16(2): 66-70 |
[18] | HEDEGAARD ELLEN M J, JOHNSEN SIMON, BJERG LASSE, et al. Functionally graded Ge1-xSix thermoelectrics by simultaneous band gap and carrier density engineering. Chem. Mater., 2014, 26(17): 4992-4997. |
[19] | KASAP SAFA, CAPPER PETER.Springer Handbook of Electronic and Photonic Materials. New York: Springer Science Business Media, Inc., 2006: 236. |
[20] | HEDEGAARD ELLEN M J, MAMAKHEL AREF A H, REARDON HAZEL, et al. Functionally graded (PbTe)1-x(SnTe)x thermoelectrics. Chem. Mater., 2018, 30(1): 280-287. |
[21] | KOHRI H, NISHIDA I A, SHIOTA I. Improvement of thermoelectric properties for n-type PbTe by adding Ge. Mater. Sci. Forum, 2003, 423-425: 381-384. |
[22] | ZHAO JI CHENG, JACKSON MELVIN R, PELUSO LOUIS A, et al.A diffusion multiple approach for the accelerated design of structural materials. MRS Bull., 2002, 27(4): 324-329. |
[23] | GELBSTEIN Y, DASHEVSKY Z, DARIEL M P.Powder metallurgical processing of functionally graded p-Pb1-xSnxTe materials for thermoelectric applications. Phys. B, 2007, 391(2): 256-265. |
[24] | HAZAN EDEN, OHAD BEN-YEHUDA, MADAR NAOR, et al. Functional graded germanium-lead chalcogenide-based thermoelectric module for renewable energy applications. Adv. Energy Mater., 2015, 5(11): 1500272-1-8. |
[25] | JANUSZKO KAMILA, STABRAWA ARTUR, OGATA YUDAI, et al.Influence of sedimentation of atoms on structural and thermoelectric properties of Bi-Sb alloys. [J]. Electron. Mater., 2016, 45(3): 1947-1955. |
[26] | ZIOLKOWSKI PAWEL, WAMBACH MATTHIAS, LUDWIG ALFRED, et al.Application of high-throughput Seebeck microprobe measurements on thermoelectric half-Heusler thin film combinatorial material libraries. ACS Comb. Sci., 2018, 20(1): 1-18. |
[27] | WAMBACH MATTHIAS, STERN ROBIN, BHATTACHARYA SANDIP, et al. Unraveling self-doping effects in thermoelectric TiNiSn half-Heusler compounds by combined theory and high-throughput experiments. Adv. Electron. Mater., 2016, 2(3): 1500208- 1-9. |
[28] | XIANG XIAO-DONG.High throughput synthesis and screening for functional materials. Appl. Surf. Sci., 2004, 223(1/3): 54-61. |
[29] | ZHAO JI-CHENG, ZHENG XUAN, CAHILLBDAVID G.Thermal conductivity mapping of the Ni-Al system and the beta-NiAl phase in the Ni-Al-Cr system. Scripta Mater., 2012, 66(11): 935-938. |
[30] | MAO SAMUELS.High throughput growth and characterization of thin film materials. J. Cryst. Growth, 2013, 379: 123-130. |
[31] | PERNOT GILLES, MICHEL HÉLÈNE, VERMEERSCH BJORN, et al. Frequency-dependent thermal conductivity in time domain thermoreflectance analysis of thin films. Mater. Res. Soc. Symp. Proc., 2011, 1347: DOI: 10.1557/opl.2011.1277. |
[32] | PADDOCK CAROLYN A, EESLEY GARY L.Transient thermoreflectance from thin metal films. [J]. Appl. Phys., 1986,60(1): 285-290. |
[33] | ABADA B, BORCA-TASCIUC D A, MARTIN-GONZALEZA M S. Non-contact methods for thermal properties measurement. Renew. Sust. Energ. Rev., 2017, 76: 1348-1370. |
[34] | MCCLUSKEY PATRICK J, VLASSAK JOOST J.Combinatorial nanocalorimetry. [J]. Mater. Res., 2010, 25(11): 2086-2100. |
[35] | GREGOIREJOHN M, MCCLUSKEYPATRICK J, DALEDARREN, et al. Combining combinatorial nanocalorimetry and X-ray diffraction techniques to study the effects of composition and quench rate on Au-Cu-Si metallic glasses. Scripta Mater., 2012, 66(3/4): 178-181. |
[36] | TRITT TERRY M.Thermal Conductivity: Theory, Properties, and Applications. New York: Kluwer Academic/Plenum Publishers, 2004: 225-231. |
[37] | EESLEY G L.Observation of nonequilibrium electron heating in copper. Phys. Rev. Lett., 1983, 51(23): 2140-2143. |
[38] | FAVALORO T, BAHK J H, SHAKOURI A. Characterization of the temperature dependence of the thermoreflectance coefficient for conductive thin films. Rev. Sci. Instrum., 2015, 86(2): 024903- 1-9. |
[39] | MANZANO CRISTINA V, ABAD BEGOÑA, MUÑOZ MIGUEL ROJO, et al. Anisotropic effects on the thermoelectric properties of highly oriented electrodeposited Bi2Te3 films. Sci. Rep., 2016, 6: 19129-1-8. |
[40] | HUXTABLE SCOTT, CAHILL DAVID G, FAUCONNIER VINCENT, et al.Thermal conductivity imaging at micrometre-scale resolution for combinatorial studies of materials. Nat. Mater., 2004, 3(5): 298-301. |
[41] | NISHI TSUYOSHI, YAMAMOTO SUGURU, MORI OKAWA, et al.Thermal microscope measurement of thermal effusivity distribution in compositionally graded PbTe-Sb2Te3-Ag2Te alloy system. Thermochim. Acta, 2018, 659: 39-43. |
[42] | WIELGOSZEWSKI GRZEGORZ, GOTSZALKA TEODOR.Scanning thermal microscopy (SThM): how to map temperature and thermal properties at the nanoscale. Adv. Imag. Electron Phys., 2015, 190: 177-221 |
[43] | GRAUBY STÉPHANE, PUYOO ETIENNE, RAMPNOUX JEAN-MICHEL, et al.Si and SiGe nanowires: fabrication process and thermal conductivity measurement by 3ω-scanning thermal microscopy. J. Phys. Chem. C, 2013, 117(17): 9025-9034. |
[44] | KING WILLIAM P, KENNY THOMAS W.Design of atomic force microscope cantilevers for combined thermomechanical writing and thermal reading in array operation. J. Microelectromech. S., 2002, 11(6): 765-774. |
[45] | ESFAHANI EHSAN NASR, MA FEI-YUE, WANG SHAN-YU,et al.Quantitative nanoscale mapping of three-phase thermal conductivities in filled skutterudites via scanning thermal microscopy. Natl. Sci. Rev., 2018, 5(1): 59-69. |
[46] | ANDRES PEREZ-TABORDA J, CABALLERO-CALERO O, VERA-LONDONO L, et al. High thermoelectric zT in n-type silver selenide films at room temperature. Adv. Energy Mater., 2018, 8(8): 1870033-1-8. |
[47] | MARHOUN FERHAT, JIRO NAGAO.Thermoelectric and transport properties of β-Ag2Se compounds. [J]. Appl. Phys., 2000, 88(2): 813-816. |
[48] | WU K H, HUNG C I, ZIOLKOWSKI P, et al. Improvement of spatial resolution for local Seebeck coefficient measurements by deconvolution algorithm. Rev. Sci. Instrum., 2009, 80(10): 105104-1-8. |
[49] | ZHOU AI-JUN, WANG WEI-HANG, YAO XU, et al.Impact of the film thickness and substrate on the thermopower measurement of thermoelectric films by the potential-Seebeck microprobe (PSM). Appl. Therm. Eng., 2016, 107: 552-559. |
[50] | MI JIAN-LI, BREMHOLM MARTIN, BIANCHI MARCO, et al.Phase separation and bulk p-n transition in single crystals of Bi2Te2Se topological insulator. Adv. Mater., 2013, 25(6): 889-893. |
[51] | DE BOOR J, STIEWEP C,ZIOLKOWSKI P, et al.High-temperature measurement of Seebeck coefficient and electrical conductivity. [J]. Electron. Mater., 2013, 42(7): 1711-1718. |
[52] | XU K Q, ZENG H R, YU H Z, et al.Ultrahigh resolution characterizing nanoscale Seebeck coefficient via the heated, conductive AFM probe. Appl. Phys. A, 2015, 118(1): 57-61. |
[1] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
[2] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[3] | CHEN Qiang, BAI Shuxin, YE Yicong. Highly Thermal Conductive Silicon Carbide Ceramics Matrix Composites for Thermal Management: a Review [J]. Journal of Inorganic Materials, 2023, 38(6): 634-646. |
[4] | LIN Junliang, WANG Zhanjie. Research Progress on Ferroelectric Superlattices [J]. Journal of Inorganic Materials, 2023, 38(6): 606-618. |
[5] | NIU Jiaxue, SUN Si, LIU Pengfei, ZHANG Xiaodong, MU Xiaoyu. Copper-based Nanozymes: Properties and Applications in Biomedicine [J]. Journal of Inorganic Materials, 2023, 38(5): 489-502. |
[6] | ZHANG Shuo, FU Qiangang, ZHANG Pei, FEI Jie, LI Wei. Influence of High Temperature Treatment of C/C Porous Preform on Friction and Wear Behavior of C/C-SiC Composites [J]. Journal of Inorganic Materials, 2023, 38(5): 561-568. |
[7] | YUAN Jingkun, XIONG Shufeng, CHEN Zhangwei. Research Trends and Challenges of Additive Manufacturing of Polymer-derived Ceramics [J]. Journal of Inorganic Materials, 2023, 38(5): 477-488. |
[8] | HE Danqi, WEI Mingxu, LIU Ruizhi, TANG Zhixin, ZHAI Pengcheng, ZHAO Wenyu. Heavy-Fermion YbAl3 Materials: One-step Synthesis and Enhanced Thermoelectric Performance [J]. Journal of Inorganic Materials, 2023, 38(5): 577-582. |
[9] | DU Jianyu, GE Chen. Recent Progress in Optoelectronic Artificial Synapse Devices [J]. Journal of Inorganic Materials, 2023, 38(4): 378-386. |
[10] | YANG Yang, CUI Hangyuan, ZHU Ying, WAN Changjin, WAN Qing. Research Progress of Flexible Neuromorphic Transistors [J]. Journal of Inorganic Materials, 2023, 38(4): 367-377. |
[11] | YOU Junqi, LI Ce, YANG Dongliang, SUN Linfeng. Double Dielectric Layer Metal-oxide Memristor: Design and Applications [J]. Journal of Inorganic Materials, 2023, 38(4): 387-398. |
[12] | QI Zhanguo, LIU Lei, WANG Shouzhi, WANG Guogong, YU Jiaoxian, WANG Zhongxin, DUAN Xiulan, XU Xiangang, ZHANG Lei. Progress in GaN Single Crystals: HVPE Growth and Doping [J]. Journal of Inorganic Materials, 2023, 38(3): 243-255. |
[13] | ZHANG Chaoyi, TANG Huili, LI Xianke, WANG Qingguo, LUO Ping, WU Feng, ZHANG Chenbo, XUE Yanyan, XU Jun, HAN Jianfeng, LU Zhanwen. Research Progress of ScAlMgO4 Crystal: a Novel GaN and ZnO Substrate [J]. Journal of Inorganic Materials, 2023, 38(3): 228-242. |
[14] | CHEN Kunfeng, HU Qianyu, LIU Feng, XUE Dongfeng. Multi-scale Crystallization Materials: Advances in in-situ Characterization Techniques and Computational Simulations [J]. Journal of Inorganic Materials, 2023, 38(3): 256-269. |
[15] | LIN Siqi, LI Airan, FU Chenguang, LI Rongbing, JIN Min. Crystal Growth and Thermoelectric Properties of Zintl Phase Mg3X2 (X=Sb, Bi) Based Materials: a Review [J]. Journal of Inorganic Materials, 2023, 38(3): 270-279. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||