Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (3): 236-246.DOI: 10.15541/jim20180321
Special Issue: 热电材料与器件
Previous Articles Next Articles
LI Xin, XI Li-Li, YANG Jiong
Received:
2018-07-16
Revised:
2018-10-02
Published:
2019-03-20
Online:
2019-02-26
Supported by:
CLC Number:
LI Xin, XI Li-Li, YANG Jiong. First Principles High-throughput Research on Thermoelectric Materials: a Review[J]. Journal of Inorganic Materials, 2019, 34(3): 236-246.
Fig. 8 Three prediction models of the κL in half-Heusler compounds[16](a) Frequency densities of the estimators of thermal conductivity at 300 Kκtransfand κforest;and (b) distribution of κanhover the 75 thermodynamically stable half-Heuslers
[1] | SEEBECK T J. On the magnetic polarization of metals and minerals by temperature differences. Annals of Physics, 1826, 82(3): 253-286. |
[2] | PELTIER J C A. New experiments on the heat effects of electric currents. Annals of Chemistry and Physics, 1834, 56: 371-386. |
[3] | ZHANG Q, LIAO J, TANG Y, et al.Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration. Energy & Environmental Science, 2017, 10(4): 956-963. |
[4] | BULMAN G E, SIIVOLA E, SHEN B, et al.Large external delta t and cooling power densities in thin-film Bi2Te3-superlattice thermoelectric cooling devices. Applied Physics Letters, 2006, 89(12): 122117-1-3. |
[5] | SHAKOURI A, ZHANG Y.On-chip solid-state cooling for integrated circuits using thin-film microrefrigerators. IEEE Transactions on Components and Packaging Technologies, 2005, 28(1): 65-69. |
[6] | WANG W, JIA F, HUANG Q, et al.A new type of low power thermoelectric micro-generator fabricated by nanowire array thermoelectric material. Microelectronic Engineering, 2005, 77(3/4): 223-229. |
[7] | LI JING-FENG.Macrofabrication technology of three-dimensional microdevices and their MEMS applications. Journal of Inorganic Materials,2002, 17(4):657-664. |
[8] | HAUTIE G, JAIN A, CHEN H, et al.Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations. Journal of Materials Chemistry, 2011, 21(43): 17147-17153. |
[9] | DE JONG M, CHEN W, ANGSTEN T, et al.Charting the complete elastic properties of inorganic crystalline compounds. Sci. Data, 2015, 2: 150009-1-13. |
[10] | TAYLOR R H, CURTAROLO S, HART G L W. Guiding the experimental discovery of magnesium alloys. Physical Review B, 2011, 84(8): 084101-1-17. |
[11] | HAUTIER G, FISCHER C, EHRLACHER V, et al.Data mined ionic substitutions for the discovery of new compounds. Inorg. Chem., 2011, 50(2): 656-663. |
[12] | CHEN W, POHLS JAN-HENDRIK, HAUTIER G, et al.Understanding thermoelectric properties from high-throughput calculations: trends, insights, and comparisons with experiment. Journal of Materials Chemistry C, 2016, 4(20): 4414-4426. |
[13] | TOHER C, PLATA J J, LEVY O, et al. High-throughput computational screening of thermal conductivity, debye temperature,gruneisen parameter using a quasiharmonic debye model. Physical Review B, 2014, 90(17): 174107-1-14. |
[14] | BLANCO M, FRANCISCO E, LUANA V.Gibbs: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic debye model. Computer Physics Communications, 2004, 158(1): 57-72. |
[15] | WANG S, WANG Z, SETYAWAN W, et al.Assessing the thermoelectric properties of sintered compounds via high-throughput ab-initio calculations. Physical Review X, 2011, 1(2): 021012-1-8. |
[16] | CARRETE J, LI W, MINGO N, et al.Finding unprecedentedly low-thermal-conductivity half-Heusler semiconductors via high-throughput materials modeling. Physical Review X, 2014, 4(1): 011019-1-9. |
[17] | GOLDSMID H, DOUGLAS R.The use of semiconductors in thermoelectric refrigeration. British Journal of Applied Physics, 1954, 5(11): 386-390. |
[18] | CHASMAR R, STRATTON R.The thermoelectric figure of merit and its relation to thermoelectric generators. International Journal of Electronics, 1959, 7(1): 52-72. |
[19] | SLACK G A.Nonmetallic crystals with high thermal conductivity. Journal of Physics & Chemistry of Solids, 1973, 34(2): 321-335. |
[20] | XI L, PAN S, LI X, et al.Discovery of high performance thermoelectric chalcogenides through reliable high throughput material screening. Journal of the American Chemical Society, 2018, 140(34): 10785-10793. |
[21] | YANG J, XI L, QIU W, et al.On the tuning of electrical and thermal transport in thermoelectrics: an integrated theory-experiment perspective. npj Computational Materials, 2016, 2:15015-1-17. |
[22] | GIBBS Z M, RICCI F, LI G, et al.Effective mass and Fermi surface complexity factor from ab initio band structure calculations. npj Computational Materials, 2017, 3(1): 8-1-7. |
[23] | CHEN LI-DONG, XIONG ZHEN, BAI SHENG-QIANG.Recent progress of thermoelectric nano-composites. Journal of Inorganic Materials,2010, 25(6):561-568. |
[24] | YAN J, GORAI P, ORTIZ B, et al.Material descriptors for predicting thermoelectric performance. Energy & Environmental Science, 2015, 8(3): 983-994. |
[25] | ANDERSON ORSON L.A simplified method for calculating the debye temperature from elastic constants. Journal of Physics and Chemistry of Solids, 1963, 24(7): 909-917. |
[26] | HILL RICHARD.The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society. Section A, 1952,65(5): 349-354. |
[27] | JIA T, CHEN G, ZHANG Y. Lattice thermal conductivity evaluated using elastic properties. Physical Review B, 2017, 95(15): 155206- 1-6. |
[28] | CLARKE D R.Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surface and Coatings Technology, 2003, 163: 67-74. |
[29] | CAHILL D G, POHL R.Lattice vibrations and heat transport in crystals and glasses. Annual Review of Physical Chemistry, 1988, 39(1): 93-121. |
[30] | CAHILL D G, BRAUN P V, CHEN G, et al.Nanoscale thermal transport. II.2003-2012. Applied Physics Reviews, 2014, 1(1): 011305-1-45. |
[31] | HAUKE J, KOSSOWSKI T.Comparison of values of Pearson's and Spearman's correlation coefficients on the same sets of data. Quaestiones Geographicae, 2011, 30(2): 87-93. |
[32] | YANG J, LI H, WU T, et al.Evaluation of half-Heusler compounds as thermoelectric materials based on the calculated electrical transport properties. Advanced Functional Materials, 2008, 18(19):2880-2888. |
[33] | YING P, LI X, WANG Y, et al.Hierarchical chemical bonds contributing to the intrinsically low thermal conductivity in α- MgAgSb thermoelectric materials. Advanced Functional Materials, 2017, 27(1): 1604145-1-8. |
[34] | LI W, LIN S, GE B, et al.Low sound velocity contributing to the high thermoelectric performance of Ag8SnSe6. Advanced Science, 2016, 3(11): 1600196-1-7. |
[35] | RICCI F, CHEN W, AYDEMIR U, et al.An ab initio electronic transport database for inorganic materials. Sci. Data, 2017, 4:170085-1-13. |
[36] | ZHU H, HAUTIER G, AYDEMIR U, et al.Computational and experimental investigation of TmAgTe2 and XYZ2 compounds, a new group of thermoelectric materials identified by first-principles high-throughput screening. Journal of Materials Chemistry C, 2015, 3(40): 10554-10565. |
[37] | AYDEMIR U, P HLS J, ZHU H, et al.YCuTe2: a member of a new class of thermoelectric materials with cute4-based layered structure. Journal of Materials Chemistry A, 2016, 4(7): 2461-2472. |
[38] | BERA C, SOULIER M, NAVONE C, et al.Thermoelectric properties of nanostructured Si1-xGex and potential for further improvement. Journal of Applied Physics, 2010, 108(12): 124306-1-8. |
[39] | ZIOLKOWSKI P, WAMBACH M, LUDWIG A, et al.Application of high-throughput seebeck microprobe measurements on thermoelectric half-Heusler thin film combinatorial material libraries. ACS Combinatorial Science, 2018, 20(1): 1-18. |
[40] | CARRETE J, MINGO N, WANG S D, et al.Nanograined half-heusler semiconductors as advanced thermoelectrics: an ab initio high-throughput statistical study. Advanced Functional Materials, 2014, 24(47): 7427-7432. |
[41] | LIAW A, WIENER M.Classification and regression by randomforest. R News, 2002, 23(23): 18-22. |
[42] | JOLLIFFE I T.Principal component analysis. Berlin, Heidelberg: Springer, 2011: 1094-1096. |
[43] | KRESSE G, FURTHMULLER J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 1996, 54(16): 11169-11186. |
[44] | ONG S P, CHOLIA S, JAIN A, et al.The materials application programming interface (API): a simple, flexible and efficient API for materials data based on representational state transfer (rest) principles. Computational Materials Science, 2015, 97: 209-215. |
[45] | ONG S P, RICHARDS W D, JAIN A, et al.Python materials genomics (pymatgen): a robust, open-source python library for materials analysis. Computational Materials Science, 2013, 68: 314-319. |
[46] | JAIN A, ONG S P, HAUTIER G, et al.The materials project: a materials genome approach to accelerating materials innovation. APL Materials, 2013, 1(1): 011002-1-11. |
[47] | ZHOU F, COCOCCIONI M, MARIANETTI C A, et al.First-principles prediction of redox potentials in transition-metal compounds with LDA + U. Physical Review B, 2004, 70(23): 235021- 1-8. |
[48] | WANG L, MAXISCH T, CEDER G.A first-principles approach to studying the thermal stability of oxide cathode materials. Chemistry of Materials, 2007, 19(3): 543-552. |
[49] | ONG S P, JAIN A, HAUTIER G, et al.Thermal stabilities of delithiated olivine MPO4 (M = Fe, Mn) cathodes investigated using first principles calculations. Electrochemistry Communications, 2010, 12(3): 427-430. |
[50] | ADAMS S, RAO R P.High power lithium ion battery materials by computational design. Physica Status Solidi a-Applications and Materials Science, 2011, 208(8): 1746-1753. |
[51] | GIANNOZZI P, BARONI S, BONINI N, et al.Quantum espresso: a modular and open-source software project for quantum simulations of materials. Journal of Physics-Condensed Matter, 2009, 21(39): 395502-1-19. |
[52] | ISAYEV O, OSES C, TOHER C, et al.Universal fragment descriptors for predicting properties of inorganic crystals. Nat. Commun., 2017, 8: 15679-1-12. |
[53] | SUPKA A R, LYONS T E, LIYANAGE L, et al.AFLOWπ: a minimalist approach to high-throughput ab initio calculations including the generation of tight-binding hamiltonians. Computational Materials Science, 2017, 136: 76-84. |
[1] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
[2] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[3] | CHEN Qiang, BAI Shuxin, YE Yicong. Highly Thermal Conductive Silicon Carbide Ceramics Matrix Composites for Thermal Management: a Review [J]. Journal of Inorganic Materials, 2023, 38(6): 634-646. |
[4] | LIN Junliang, WANG Zhanjie. Research Progress on Ferroelectric Superlattices [J]. Journal of Inorganic Materials, 2023, 38(6): 606-618. |
[5] | NIU Jiaxue, SUN Si, LIU Pengfei, ZHANG Xiaodong, MU Xiaoyu. Copper-based Nanozymes: Properties and Applications in Biomedicine [J]. Journal of Inorganic Materials, 2023, 38(5): 489-502. |
[6] | YUAN Jingkun, XIONG Shufeng, CHEN Zhangwei. Research Trends and Challenges of Additive Manufacturing of Polymer-derived Ceramics [J]. Journal of Inorganic Materials, 2023, 38(5): 477-488. |
[7] | HE Danqi, WEI Mingxu, LIU Ruizhi, TANG Zhixin, ZHAI Pengcheng, ZHAO Wenyu. Heavy-Fermion YbAl3 Materials: One-step Synthesis and Enhanced Thermoelectric Performance [J]. Journal of Inorganic Materials, 2023, 38(5): 577-582. |
[8] | DU Jianyu, GE Chen. Recent Progress in Optoelectronic Artificial Synapse Devices [J]. Journal of Inorganic Materials, 2023, 38(4): 378-386. |
[9] | YANG Yang, CUI Hangyuan, ZHU Ying, WAN Changjin, WAN Qing. Research Progress of Flexible Neuromorphic Transistors [J]. Journal of Inorganic Materials, 2023, 38(4): 367-377. |
[10] | YOU Junqi, LI Ce, YANG Dongliang, SUN Linfeng. Double Dielectric Layer Metal-oxide Memristor: Design and Applications [J]. Journal of Inorganic Materials, 2023, 38(4): 387-398. |
[11] | QI Zhanguo, LIU Lei, WANG Shouzhi, WANG Guogong, YU Jiaoxian, WANG Zhongxin, DUAN Xiulan, XU Xiangang, ZHANG Lei. Progress in GaN Single Crystals: HVPE Growth and Doping [J]. Journal of Inorganic Materials, 2023, 38(3): 243-255. |
[12] | ZHANG Chaoyi, TANG Huili, LI Xianke, WANG Qingguo, LUO Ping, WU Feng, ZHANG Chenbo, XUE Yanyan, XU Jun, HAN Jianfeng, LU Zhanwen. Research Progress of ScAlMgO4 Crystal: a Novel GaN and ZnO Substrate [J]. Journal of Inorganic Materials, 2023, 38(3): 228-242. |
[13] | CHEN Kunfeng, HU Qianyu, LIU Feng, XUE Dongfeng. Multi-scale Crystallization Materials: Advances in in-situ Characterization Techniques and Computational Simulations [J]. Journal of Inorganic Materials, 2023, 38(3): 256-269. |
[14] | LIN Siqi, LI Airan, FU Chenguang, LI Rongbing, JIN Min. Crystal Growth and Thermoelectric Properties of Zintl Phase Mg3X2 (X=Sb, Bi) Based Materials: a Review [J]. Journal of Inorganic Materials, 2023, 38(3): 270-279. |
[15] | LIU Yan, ZHANG Keying, LI Tianyu, ZHOU Bo, LIU Xuejian, HUANG Zhengren. Electric-field Assisted Joining Technology for the Ceramics Materials: Current Status and Development Trend [J]. Journal of Inorganic Materials, 2023, 38(2): 113-124. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||