Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (2): 152-158.DOI: 10.15541/jim20180200
• RESEARCH PAPER • Previous Articles Next Articles
DENG Min, JIANG Qi, DUAN Zhi-Hong, LIU Qing-Qing, JIANG Li, LU Xiao-Ying
Received:
2018-04-27
Revised:
2018-05-28
Published:
2019-02-20
Online:
2019-01-24
About author:
DENG Min. E-mail: 3105a@swjtu.cn
Supported by:
CLC Number:
DENG Min, JIANG Qi, DUAN Zhi-Hong, LIU Qing-Qing, JIANG Li, LU Xiao-Ying. Rice-like CuO Chemically Modified Electrode: Preparation and Detection for Glucose[J]. Journal of Inorganic Materials, 2019, 34(2): 152-158.
Fig. 2 CV curves of different CMEs in blank and samples (a), EIS curves of the different CuO/Nafion-CMEs in 0.5 mol/L KCl solution and 10 mmol/L K3Fe(CN)6/K4Fe(CN)6 (b, c) with inset showing the equivalent circuit diagram, and the relationship between the electron transfer resistance (Rct) and the CuO modified amount (d)
Fig. 3 LSV curves of the different CuO/Nafion-CMEs in sample solution (a) and relationship between the peak current, the peak potential and the CuO modified amount (b)
Fig. 4 CV curves of the S electrode in detection solution at different scan rates (a) and relationship between the oxidation peak current and the scan rate (b)
Fig. 5 I-t curves of the S electrode in blank solution with continuous dropping glucose (a), the relationship between the response current and the glucose concentration (b), the results of anti-interference experiments (c), and the stability experiments (d)
Electrode materials | Linear range/(mmol·L-1) | Sensitivity/(μA·L·mmol-1·cm-2) | Detection limit/ (μmol·L-1) | Ref. |
---|---|---|---|---|
Flower-structured CuO | 0.01-0.20 | 1830 | 8 | [5] |
Microspheres-structured CuO | 0.001-4.000 | 349.6 | 0.50 | [8] |
Microflowers-structured CuO | 0.05-3.00 | 383 | 10 | [10] |
Sandwich-structured CuO | 0-3.2 | 5342.8 | 1.0 | [14] |
Microspheres-structured CuO | 2-9 | 26.59 | 20.6 | [22] |
Cob-like CuO | 0.005-1.600 | 726.9 | 2 | [23] |
Peony-like CuO | 0.001-4.000 | 1322 | 0.5 | [24] |
Rice-like CuO | 0.0357-2.3610 | 950.36 | 0.0647 | This work |
Table 1 Comparison of detection performances of the S electrode and those non-enzymatic glucose sensors reported elsewhere
Electrode materials | Linear range/(mmol·L-1) | Sensitivity/(μA·L·mmol-1·cm-2) | Detection limit/ (μmol·L-1) | Ref. |
---|---|---|---|---|
Flower-structured CuO | 0.01-0.20 | 1830 | 8 | [5] |
Microspheres-structured CuO | 0.001-4.000 | 349.6 | 0.50 | [8] |
Microflowers-structured CuO | 0.05-3.00 | 383 | 10 | [10] |
Sandwich-structured CuO | 0-3.2 | 5342.8 | 1.0 | [14] |
Microspheres-structured CuO | 2-9 | 26.59 | 20.6 | [22] |
Cob-like CuO | 0.005-1.600 | 726.9 | 2 | [23] |
Peony-like CuO | 0.001-4.000 | 1322 | 0.5 | [24] |
Rice-like CuO | 0.0357-2.3610 | 950.36 | 0.0647 | This work |
Samples | Detected/(mmol·L-1) | Added/(mmol·L-1) | Found/(mmol·L-1) | Recovery/% | RSD/(%, n=5) |
---|---|---|---|---|---|
1 | 0.893 | 0.200 | 1.088 | 97.50 | 1.9 |
2 | 0.893 | 0.400 | 1.279 | 96.50 | 2.3 |
3 | 0.893 | 0.600 | 1.482 | 98.17 | 1.5 |
4 | 0.893 | 0.800 | 1.672 | 97.38 | 2.5 |
Table 2 Data of recovery experiments of the S electrode for glucose
Samples | Detected/(mmol·L-1) | Added/(mmol·L-1) | Found/(mmol·L-1) | Recovery/% | RSD/(%, n=5) |
---|---|---|---|---|---|
1 | 0.893 | 0.200 | 1.088 | 97.50 | 1.9 |
2 | 0.893 | 0.400 | 1.279 | 96.50 | 2.3 |
3 | 0.893 | 0.600 | 1.482 | 98.17 | 1.5 |
4 | 0.893 | 0.800 | 1.672 | 97.38 | 2.5 |
[1] | LU N, SHAO C, LI X,et al. CuO/Cu2O nanofibers as electrode materials for non-enzymatic glucose sensors with improved sensitivity. RSC Adv, 2014, 4(59): 31056-31061. |
[2] | ZHANG J, MA J, ZHANG S,et al. A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles decorated carbon spheres. Sens. Actuators B, 2015, 211(7): 385-391. |
[3] | WANG X, GE C, CHEN K,et al. An ultrasensitive non-enzymatic glucose sensors based on controlled petal-like CuO nanostructure. Electrochim. Acta, 2018, 259(1): 225-232. |
[4] | MONDAL S, MADHURI R, SHARMA P K. CuO nanostructure modified pencil graphite electrode for non-enzymatic detection of glucose. AIP Conference Proceedings, 2017, 1832(1): 050011-1-3. |
[5] | CHAWLA M, SHARMA V, RANDHAWA J K.Facile one pot synthesis of CuO nanostructures and their effect on nonenzymatic glucose biosensing.Electrocatalysis, 2017, 8(1): 27-35. |
[6] | GOU X, SUN S, YANG Q,et al. A very facile strategy for the synthesis of ultrathin CuO nanorods towards non-enzymatic glucose sensing. New J. Chem., 2018, 42(8): 6364-6369. |
[7] | YUAN R, LI H, YIN X,et al. 3D CuO nanosheet wrapped nanofilm grown on Cu foil for high-performance non-enzymatic glucose biosensor electrode. Talanta, 2017, 174(20): 514-520. |
[8] | LIU X, YANG Y, LIU R,et al. Synthesis of porous CuO microspheres assembled from (001) facet-exposed nanocrystals with excellent glucose-sensing performance. J. Alloy. Compd, 2017, 718(29): 304-310. |
[9] | KHAYYAT S A, ANSARI S G, UMAR A.Glucose sensor based on copper oxide nanostructures.J. Nanosci. Nanotechno., 2014, 14(5): 3569-3574. |
[10] | MAHMOUD B G, KHAIRY M, RASHWAN F A.Self-assembly of porous copper oxide hierarchical nanostructures for selective determinations of glucose and ascorbic acid.RSC Adv., 2016, 6(18): 14474-14482. |
[11] | KHAN R, AHMAD R, RAI P.Glucose-assisted synthesis of Cu2O shuriken-like nanostructures and their application as nonenzymatic glucose biosensors.Sens. Actuators B, 2014, 203(14): 471-476. |
[12] | ALIZADEH T, MIRZAGHOLIPUR S.A Nafion-free non-enzymatic amperometric glucose sensor based on copper oxide nanoparticles-graphene nanocomposite.Sens. Actuators B, 2014, 198(9): 438-447. |
[13] | XIANG C L, ZOU Y J, XIE J J,et al. Nafion-modified glassy carbon electrode for trace determination of indium. Anal. Lett., 2005, 38(13): 2045-2055. |
[14] | MEHER S K, RAO G R.Archetypal sandwich-structured CuO for high performance non-enzymatic sensing of glucose.Nanoscale, 2013, 5(5): 2089-2099. |
[15] | JANA R, DEY A, DAS M,et al. Improving performance of device made up of CuO nanoparticles synthesized by hydrothermal over the reflux method. Appl. Surf. Sci., 2018, 452(27):155-164. |
[16] | WANG D, YAN B, SONG C,et al. Synthesis of hierarchical self-assembled CuO and their structure-enhanced photocatalytic performance. J. Electro. Mater., 2018, 47(1): 744-750. |
[17] | LUO J, JIANG S S, ZHANG H Y,et al. A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode. Anal. Chim. Acta, 2012, 709(1): 47-53. |
[18] | LI K, FAN G L, YANG L,et al. Novel ultrasensitive non-enzymatic glucose sensors based on controlled flower-like CuO hierarchical films. Sens. Actuators B, 2014, 199(10): 175-182. |
[19] | WANG X, LIU E, ZHANG X.Non-enzymatic glucose biosensor based on copper oxide-reduced graphene oxide nanocomposites synthesized from water-isopropanol solution.Electrochim. Acta, 2014, 130(16): 253-260. |
[20] | ZHANG Y, LIU Y, SU L,et al. CuO nanowires based sensitive and selective non-enzymatic glucose detection. Sens. Actuators B, 2014, 191(2): 86-93. |
[21] | VELMURUGAN M, KARIKALAN N, CHEN S J.Synthesis and characterizations of biscuit-like copper oxide for the non-enzymatic glucose sensor applications. Colloid Interf. Sci., 2017, 493(9): 349-355. |
[22] | SARAF M, NATARAJAN K, MOBIN S M.Non-enzymatic amperometric sensing of glucose by employing sucrose templated microspheres of copper oxide (CuO).Dalton T., 2016, 45(13): 5833-5840. |
[23] | JI X, WANG A, ZHAO Q. Direct growth of copper oxide films on Ti substrate for nonenzymatic glucose sensors. J. Nanomater., 2014, 2014(2): 287303-1-5. |
[24] | MA X G, ZHAO Q, WANG H,et al. Controlled synthesis of CuO from needle to flower-like particle morphologies for highly sensitive glucose detection. Int. J. Electrochem. Sci., 2017, 12: 8217-8226. |
[25] | YANG S, LI G, WANG D,et al. Synthesis of nanoneedle-like copper oxide on N-doped reduced graphene oxide: a three- dimensional hybrid for nonenzymatic glucose sensor. Sens. Actuators B, 2017, 238(1): 588-595. |
[26] | ZHANG X, SUN S, LÜ J,et al. Nanoparticle-aggregated CuO nanoellipsoids for high-performance non-enzymatic glucose detection. J. Mater. Chem. A, 2014, 2(26): 10073-10080. |
[27] | VINOTH V, SHERGILIN T D, ASIRI A M,et al. Facile synthesis of copper oxide microflowers for nonenzymatic glucose sensor applications. Mat. Sci. Semicon. Proc., 2018, 82(8): 31-38. |
[1] | SUN Han, LI Wenjun, JIA Zixuan, ZHANG Yan, YIN Liying, JIE Wanqi, XU Yadong. Effect of ACRT Technology on the Large Size ZnTe Crystals Grown by Solution Method and Corresponding Terahertz Properties [J]. Journal of Inorganic Materials, 2023, 38(3): 310-315. |
[2] | DU Qiujing, LIU Tianzhi, CHEN Jufeng, CHEN Hangrong. Construction of Prussian Blue Fluorescent Nanoprobe for Specific Detection of HClO in Cancer Cells [J]. Journal of Inorganic Materials, 2023, 38(1): 55-61. |
[3] | LI Yanyan, PENG Yusi, LIN Chenglong, LUO Xiaoying, TENG Zheng, ZHANG Xi, HUANG Zhengren, YANG Yong. Nanomaterials and Biosensing Technology for the SARS-CoV-2 Detection [J]. Journal of Inorganic Materials, 2023, 38(1): 3-31. |
[4] | LIU Yao, YOU Xunhai, ZHAO Bing, LUO Xiaoying, CHEN Xing. Functional Nanomaterials for Electrochemical SRAS-CoV-2 Biosensors: a Review [J]. Journal of Inorganic Materials, 2023, 38(1): 32-42. |
[5] | CAO Zhijun, LI Zaijun. Ruthenium-biocarbon Mimic Enzyme: Synthesis and Application in Colorimetric Detection of Pesticide Chlorpyrifos [J]. Journal of Inorganic Materials, 2022, 37(5): 554-560. |
[6] | SHAN Wei,FU Zhengqian,ZHANG Faqiang,MA Mingsheng,LIU Zhifu,LI Yongxiang. SnS2 Nanoplates: Synthesis and NO2 Sensing Property [J]. Journal of Inorganic Materials, 2020, 35(4): 497-504. |
[7] | CHEN Lei, CHEN Lanhua, ZHANG Yugang, XIE Jian, DIWU Juan. A Layered Uranyl Coordination Polymer with UV Detection Sensitivity, Stability, and Reusability [J]. Journal of Inorganic Materials, 2020, 35(12): 1391-1397. |
[8] | ZHANG Zhi-Ming,FANG Xiao-Sheng. Preparation and Photodetection Property of ZnO Nanorods/ZnCo2O4 Nanoplates Heterojunction [J]. Journal of Inorganic Materials, 2019, 34(9): 991-996. |
[9] | FAN Mao, WANG Lin, PEI Cheng-Xin, SHI Wei-Qun. Alkalization Intercalation of MXene for Electrochemical Detection of Uranyl Ion [J]. Journal of Inorganic Materials, 2019, 34(1): 85-90. |
[10] | YAO Mei-Na, YANG Xian-Jin, CUI Zhen-Duo, ZHU Sheng-Li, LI Zhao-Yang, LIANG Yan-Qin. Detection of Cd2+ by Square Wave Anodic Stripping Voltammetry Using an Activated Bismuth-film Electrodes [J]. Journal of Inorganic Materials, 2019, 34(1): 91-95. |
[11] | ZHAO Hai-Lei, SUN Zhen-Chuan, CHEN Kui, WANG Hong-Zhi, YANG Yan-Dong, ZHOU Jian-Jun, LI Feng-Yuan, ZHANG Bing, SONG Fa-Liang. Synthesis, Property and Wear Detection of Disc Cutter for Shield Tunneling Machine of Nanobelt Ca0.68Si9Al3(ON)16 : Eu2+ Luminescence Fibers [J]. Journal of Inorganic Materials, 2018, 33(8): 866-872. |
[12] | GUO Ling-Xia, SHI Yu-Chen, ZHAO Zhen-Jie, LI Xin. Fabrication and Fluorescence Biodetection of ZnO Nanorods Using Microfluidic Technology [J]. Journal of Inorganic Materials, 2018, 33(10): 1103-1109. |
[13] | DENG Min, JIANG Qi, FANG Yuan, LI Huan, QIU Jia-Xin, LU Xiao-Ying. Carbon Nanotubes/Polyaniline Chemically Modified Electrode: Preparation and Ascorbic Acid Detection [J]. Journal of Inorganic Materials, 2018, 33(1): 53-59. |
[14] |
QIN Dong-Yu, HE Xiao-Long, NIE Qiu-Lin, YIN Hao-Yong, YUAN Qiu-Li.
In Situ Preparation and Glucose Sensing Property of Ternary NiO/Ni/C Microspheres [J]. Journal of Inorganic Materials, 2017, 32(3): 313-318. |
[15] | LIU Wei, PAN Shang-Ke, LI Huan-Ying, JIANG Yong, CHEN Xiao-Feng, REN Guo-Hao. Growth and Scintillation Properties of Ce:Li6Lu(10BO3)3 Crystal [J]. Journal of Inorganic Materials, 2015, 30(8): 809-813. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||