Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (3): 279-293.DOI: 10.15541/jim20180465
Special Issue: 庆祝上海硅酸盐所独立建所60周年虚拟专刊!; 热电材料与器件; 优秀作者论文集锦; 优秀作者作品欣赏:能源材料
• Review • Previous Articles Next Articles
ZHANG Qi-Hao, BAI Sheng-Qiang, CHEN Li-Dong
Received:
2018-10-08
Revised:
2018-10-29
Published:
2019-03-20
Online:
2018-11-01
Supported by:
CLC Number:
ZHANG Qi-Hao, BAI Sheng-Qiang, CHEN Li-Dong. Technologies and Applications of Thermoelectric Devices: Current Status, Challenges and Prospects[J]. Journal of Inorganic Materials, 2019, 34(3): 279-293.
Fig. 1 Timelines underscoring the improvement in (a) zT value of typical thermoelectric materials[6,7] and (b) conversion efficiency of typical thermoelectric power generation devices[10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40]
Fig. 5 (a) Conversion efficiency as a function of thermoelectricelement height for different thermal contact parameter,r,and (b) power output ratio Pc/Pmax as a function of the electrical contact parameter,n, for different thermoelectric element height[46]
Fig. 7 Analogical scheme of the thermoelectric phenomena with the thermal capacitances $C_{n}=\rho ·n·C_{p_{n}}·\frac{H}{N}·A$ and thermal conductances $K_{n}=\frac{k_{n}·A}{H/N}$ [55]
Thermoelectric material | (Th/Tc)/℃ | Electrode | Interface layer | Joining method | Ref. |
---|---|---|---|---|---|
Bismuth telluride | 240/22 | Cu | Ni | Soldering | [59-60] |
Bismuth telluride | - | - | Ni | One-step hot press sintering | [61] |
Bismuth telluride | 200/- | Cu | Ni | Solid-liquid diffusion welding | [62] |
Bismuth telluride | 250/50 | Al | Mo | Plasma spraying | [63] |
Bismuth telluride | 240/20 | Cu | Mo | Arc spraying | [64] |
MgAg0.965Ni0.005Sb0.99 | 245/20 | Ag | - | Diffusion welding | [65] |
Poly[Ax(M-ett)] | 147/67 | Hot side: Al | Au | [66] | |
Cold side: Ag | |||||
n-type PbTe + p-type TAGS 85 | 500/100 | Ag | Ag/Fe/Ag + Fe | Diffusion welding | [25] |
Skutterudite | 500/40 | Al | Mo | Brazing | [67] |
Skutterudite | 550/70 | n-type: CoSi2 | [31] | ||
p-type: Co2Si | |||||
Skutterudite | 600/35 | Hot side: Mo-Cu Cold side: Cu | Ti-Al | Brazing | [17] |
n-type Bi2Te3/PbTe + p-type Sb2Te3/PbTe | 600/10 | Cu | Hot side: Co0.8Fe0.2 | Liquid InGa eutectic alloy | [35] |
Cold side: Ni | |||||
Bismuth telluride/ Skutterudite | 600/35 | Hot side: Mo-Cu | Hot side: Ti-Al | Welding | [40] |
Cold side: Cu | Cold side: Ni | ||||
Half-Heusler | 718/63 | Hot side: Mo-Cu | Brazing | [18] | |
Cold side: Cu | |||||
n-type Fe0.93Co0.07Si1.99Al0.01 + p-type MnSi1.73 | 700/100 | TiSi2 | Welding | [19] | |
SiGealloy | 870/31 | Mo | Pressure contact | Cold side In welding | [68] |
SiGe alloy | 553/44 | Mo | C | Brazing | [69] |
SiGe alloy | 1000/300 | With Ti layer | Diffusion welding | [70] | |
n-type Ca0.92La0.08MnO3 + p-type Ca2.75Gd0.25Co4O9 | 773 /383 | Silver electrode | Silver paste | [71] | |
p-type Mg2Si0.53Sn0.4Ge0.05Bi0.02 + n-type MnSi1.75Ge0.01 | 735/50 | Hot side: Mo | p-type: Ni/Pb/Ni | Spring contact | [37] |
Cold side: Cu | n-type: Cu |
Table 1 Electrode, interface layer and joining method of typical thermoelectric devices
Thermoelectric material | (Th/Tc)/℃ | Electrode | Interface layer | Joining method | Ref. |
---|---|---|---|---|---|
Bismuth telluride | 240/22 | Cu | Ni | Soldering | [59-60] |
Bismuth telluride | - | - | Ni | One-step hot press sintering | [61] |
Bismuth telluride | 200/- | Cu | Ni | Solid-liquid diffusion welding | [62] |
Bismuth telluride | 250/50 | Al | Mo | Plasma spraying | [63] |
Bismuth telluride | 240/20 | Cu | Mo | Arc spraying | [64] |
MgAg0.965Ni0.005Sb0.99 | 245/20 | Ag | - | Diffusion welding | [65] |
Poly[Ax(M-ett)] | 147/67 | Hot side: Al | Au | [66] | |
Cold side: Ag | |||||
n-type PbTe + p-type TAGS 85 | 500/100 | Ag | Ag/Fe/Ag + Fe | Diffusion welding | [25] |
Skutterudite | 500/40 | Al | Mo | Brazing | [67] |
Skutterudite | 550/70 | n-type: CoSi2 | [31] | ||
p-type: Co2Si | |||||
Skutterudite | 600/35 | Hot side: Mo-Cu Cold side: Cu | Ti-Al | Brazing | [17] |
n-type Bi2Te3/PbTe + p-type Sb2Te3/PbTe | 600/10 | Cu | Hot side: Co0.8Fe0.2 | Liquid InGa eutectic alloy | [35] |
Cold side: Ni | |||||
Bismuth telluride/ Skutterudite | 600/35 | Hot side: Mo-Cu | Hot side: Ti-Al | Welding | [40] |
Cold side: Cu | Cold side: Ni | ||||
Half-Heusler | 718/63 | Hot side: Mo-Cu | Brazing | [18] | |
Cold side: Cu | |||||
n-type Fe0.93Co0.07Si1.99Al0.01 + p-type MnSi1.73 | 700/100 | TiSi2 | Welding | [19] | |
SiGealloy | 870/31 | Mo | Pressure contact | Cold side In welding | [68] |
SiGe alloy | 553/44 | Mo | C | Brazing | [69] |
SiGe alloy | 1000/300 | With Ti layer | Diffusion welding | [70] | |
n-type Ca0.92La0.08MnO3 + p-type Ca2.75Gd0.25Co4O9 | 773 /383 | Silver electrode | Silver paste | [71] | |
p-type Mg2Si0.53Sn0.4Ge0.05Bi0.02 + n-type MnSi1.75Ge0.01 | 735/50 | Hot side: Mo | p-type: Ni/Pb/Ni | Spring contact | [37] |
Cold side: Cu | n-type: Cu |
Fig. 10 Scanning electron microscope images of CoSb3/Ti/Mo-Cu interface after thermal aging at 550 ℃ for different periods[115](a) 0; (b) 8 d; (c) 20 d; (d) 30 d
Fig. 11 (a) Schematic diagram of the formation of Ti(100-x)Alx-Yb0.6Co4Sb12 interface, (b) the diffusion layer thickness and (c) specificcontact resistivity of the Ti(100-x)Alx-Yb0.6Co4Sb12 interface as a function of the thermal aging time under 600 ℃ and vacuum condition[79]
[1] | ROWE D M. Modules, Systems,Applications in Thermoelectrics. Boca Raton: CRC Press, 2012. |
[2] | KRAEMER D, JIE Q, MCENANEY K, et al.Concentrating solar thermoelectric generators with a peak efficiency of 7.4%. Nat. Energy, 2016, 1(11): 16153. |
[3] | SUAREZ F, NOZARIASBMARZ A, VASHAEE D, et al.Designing thermoelectric generators for self-powered wearable electronics. Energy Environ. Sci., 2016, 9(6): 2099-2113. |
[4] | CHAMPIER D.Thermoelectric generators: a review of applications. Energy Convers. Manage., 2017, 140: 167-181. |
[5] | ROWE D M.CRC Handbook of Thermoelectrics. CRC Press, 1995. |
[6] | SHI X, CHEN L, UHER C.Recent advances in high-performance bulk thermoelectric materials. Int. Mater. Rev., 2016, 61(6): 1-37. |
[7] | QIN Y T, ZHANG Q H, QIU P F, et al.High-performance bulk thermoelectric materials and devices. Science Foundation in China, 2016, 24(4): 67-80. |
[8] | AN H C, SEON J H.Thermoelectric generator for vehicle. US8839614. 2014. |
[9] | KIM T Y, NEGASH A A, CHO G.Waste heat recovery of a diesel engine using a thermoelectric generator equipped with customized thermoelectric modules. Energy Convers. Manage., 2016, 124: 280-286. |
[10] | KUROKI T, KABEYA K, MAKINO K, et al.Thermoelectric generation using waste heat in steel works. [J]. Electron. Mater., 2014, 43(6): 2405-2410. |
[11] | BENNETT G L.Space Applications. in CRC Handbook of Thermoelectrics. ed Rowe D M, CRC Press, 1995, 515-537. |
[12] | ZHANG J Z. Thermoelectric Technology.Tianjin: Tianjin Science and Technology Press, 2013. |
[13] | HAO F, QIU P, TANG Y, et al.High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300 ℃. Energy Environ. Sci., 2016, 9(10): 3120-3127. |
[14] | GUO J Q, GENG H Y, OCHI T, et al.Development of skutterudite thermoelectric materials and modules. [J]. Electron. Mater., 2012, 41(6): 1036-1042. |
[15] | GENG H, OCHI T, SUZUKI S, et al.Thermoelectric properties of multifilled skutterudites with La as the main filler. [J]. Electron. Mater., 2013, 42(7): 1999-2005. |
[16] | BARTHOLOMÉ K, BALKE B, ZUCKERMANN D, et al.Thermoelectric modules based on half-Heusler materials produced in large quantities. [J]. Electron. Mater., 2014, 43(6): 1775-1781. |
[17] | ZHANG Q, ZHOU Z, DYLLA M, et al.Realizing high-performance thermoelectric power generation through grain boundary engineering of skutterudite-based nanocomposites. Nano Energy, 2017, 41: 501-510. |
[18] | FU C G, BAI S Q, LIU Y, et al. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials. Nat. Commun., 2015, 6: 8144-1-7. |
[19] | GROB E, RIFFEL M, STÖHRER U. Thermoelectric generators made of FeSi2 and HMS: fabrication and measurement. [J]. Mater. Res., 1995, 10: 34-40. |
[20] | CAILLAT T, FLEURIAL J P, SNYDER G N, et al.Development of High Efficiency Segmented Thermoelectric Unicouples. 20th International Conference on Thermoelectrics, Beijing, China, 2001: 282-285. |
[21] | AOYAMA I, KAIBE H, RAUSCHER L, et al.Doping effects on thermoelectric properties of higher manganese silicides (HMSs, MnSi1.74) and characterization of thermoelectric generating module using, p-type (Al, Ge and Mo)-doped HMSs and n-type Mg2Si0.4Sn0.6 legs. Jpn. J. Appl. Phys., 2005, 44(6A): 4275-4281. |
[22] | EL-GENK M S, SABER H H, CAILLAT T, et al. Tests results and performance comparisons of coated and uncoated skutterudite based segmented unicouples. Energy Convers. Manage., 2006, 47(2): 174-200. |
[23] | HORI Y, ITO T.Fabrication of 500 ℃ Class Thermoelectric Module and Evaluation of its High Temperature Stability. 25th International Conference on Thermoelectrics, Vienna, Austria, 2006: 642-645. |
[24] | SABER H H, EL-GENK M S, CAILLAT T. Tests results of skutterudite based thermoelectric unicouples. Energy Convers. Manage., 2007, 48(2): 555-567. |
[25] | SINGH A, BHATTACHARYA S, THINAHARAN C, et al. Development of low resistance electrical contacts for thermoelectric devices based on n-type PbTe and p-type TAGS-85 ((AgSbTe2)0.15(GeTe)0.85). J. Phys. D Appl. Phys., 2009, 42(1): 015502-1-5. |
[26] | VIKHOR L N, ANATYCHUK L I.Generator modules of segmented thermoelements. Energy Convers. Manage., 2009, 50(9): 2366-2372. |
[27] | ZHAO D, TIAN C, TANG S, et al.Fabrication of a CoSb3-based thermoelectric module. Mater. Sci. Semicon. Proc., 2010, 13(3): 221-224. |
[28] | POON S J, WU D, ZHU S, et al.Half-Heusler phases and nanocomposites as emerging high-ZT thermoelectric materials. [J]. Mater. Res., 2011, 26(22): 2795-2802. |
[29] | ANATYCHUK L I, VIKHOR L N, STRUTYNSKA L T, et al.Segmented generator modules using Bi2Te3-based materials. [J]. Electron. Mater., 2011, 40(5): 957-961. |
[30] | SEETAWAN T. Designing and fabricating of low cost thermoelectric power generators. Appl. Mechan. Mater., 2011, 110-116: 4101-4105. |
[31] | MUTO A, YANG J, POUDEL B, et al.Skutterudite unicouple characterization for energy harvesting applications. Adv. Energy Mater., 2013, 3(2): 245-251. |
[32] | TAKABATAKE T.Nano-cage Structured Materials: Clathrates. in Thermoelectric Nanomaterials: Materials Design and Application[M]//KOUMOTO K, MORI T. Springer, Heidelberg, 2013, 33-49. |
[33] | KRAEMER D, SUI J, MCENANEY K, et al.High thermoelectric conversion efficiency of MgAgSb-based material with hot-pressed contacts. Energy Environ. Sci., 2015, 8(4): 1299-1308. |
[34] | LE T H, NONG N V, SNYDER G J, et al.High performance p-type segmented leg of misfit-layered cobaltite and half-Heusler alloy. Energy Convers. Manage., 2015, 99: 20-27. |
[35] | HU X, YAMAMOTO A, NAGASE K.Characterization of half-Heusler unicouple for thermoelectric conversion. [J]. Appl. Phys., 2015, 117(22): 1457-1461. |
[36] | BALAYA P.High-efficiency energy harvesting using TAGS-85/half-Heusler thermoelectric devices. Energy Harvesting and Storage: Materials, Devices, and Applications V, 2014, 9115: 911507. |
[37] | SKOMEDAL G, HOLMGREN L, MIDDLETON H, et al.Design, assembly and characterization of silicide-based thermoelectric modules. Energy Convers. Manage., 2016, 110: 13-21. |
[38] | ZONG P A, HANUS R, DYLLA M, et al.Skutterudite with graphene-modified grain-boundary complexion enhances zT enabling high-efficiency thermoelectric device. Energy Environ. Sci., 2017, 10(1): 183-191. |
[39] | HU X, JOOD P, OHTA M, et al.Power generation from nanostructured PbTe-based thermoelectrics: comprehensive development from materials to modules. Energy Environ. Sci., 2016, 9(2): 517-529. |
[40] | ZHANG Q, LIAO J, TANG Y, et al.Realizing thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration. Energy Environ. Sci., 2017, 10(4):956-963. |
[41] | WHALEN S A, APBLETT C A, ASELAGE T L.Improving power density and efficiency of miniature radioisotopic thermoelectric generators. [J]. Power Sources, 2008, 180(1): 657-663. |
[42] | HAMMEL T, BENNETT R, OTTING W, et al. Multi-mission Radioisotope Thermoelectric Generator (MMRTG) and Performance Prediction Model. Int. Energy Convers. Engineer. Conf., 2013: 551-555. |
[43] | SONG J Q, SHI X, ZHANG W Q, et al.Heat conduction in thermoelectric materials and micro-devices. Physics, 2013, 42(2): 112-123. |
[44] | ZHANG F, ZANG Y, HUANG D, et al. Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials. Nat. Commun., 2015, 6: 8356-1-10. |
[45] | CHEN L D, LIU R H, SHI X.Thermoelectric Materials and Devices. Beijing: Science Press, 2017. |
[46] | ZHANG Q H, HUANG X Y, BAI S Q, et al.Thermoelectric devices for power generation: recent progress and future challenges. Adv. Eng. Mater., 2016, 18(2): 194-213. |
[47] | CHEN J, YAN Z, WU L.The influence of Thomson effect on the maximum power output and maximum efficiency of a thermoelectric generator. [J]. Appl. Phys., 1996, 79(11): 8823-8828. |
[48] | FRAISSE G, RAMOUSSE J, SGORLON D, et al.Comparison of different modeling approaches for thermoelectric elements. Energy Convers. Manage., 2013, 65(1): 351-356. |
[49] | CHEN L, GONG J, SUN F, et al.Effect of heat transfer on the performance of thermoelectric generators. Int. [J]. Therm. Sci., 2002, 41(1): 95-99. |
[50] | LEE H S.Optimal design of thermoelectric devices with dimensional analysis. Appl. Energy, 2013, 106(11): 79-88. |
[51] | MONTECUCCO A, BUCKLE J R, KNOX A R.Solution to the 1-D unsteady heat conduction equation with internal Joule heat generation for thermoelectric devices. Appl. Therm. Engineer., 2012, 35(3): 177-184. |
[52] | CHEN M, ROSENDAHL L A, CONDRA T.A three-dimensional numerical model of thermoelectric generators in fluid power systems. Int. [J]. Heat Mass Trans., 2011, 54(1/2/3): 345-355. |
[53] | CHENG C H, HUANG S Y, CHENG T C.A three-dimensional theoretical model for predicting transient thermal behavior of thermoelectric coolers. Int. [J]. Heat Mass Trans., 2010, 53(9): 2001-2011. |
[54] | CHEN W H, LIAO C Y, HUNG C I.A numerical study on the performance of miniature thermoelectric cooler affected by Thomson effect. Appl. Energy, 2012, 89(1): 464-473. |
[55] | FRAISSE G, LAZARD M, GOUPIL C, et al.Study of a thermoelement’s behaviour through a modelling based on electrical analogy. Int. [J]. Heat Mass Trans., 2010, 53(17/18): 3503-3512. |
[56] | ANTONOVA E E, LOOMAN D C.Finite Elements for Thermoelectric Device Analysis in ANSYS. International Conference on Thermoelectrics. IEEE Xplore, 2005: 215-218. |
[57] | XU J F. ANSYS Workbench 15. 0. Publishing House of Electronics Industry, Beijing, China, 2014. |
[58] | JIA X D.Studies on the Properties of Thermoelectric Materials and Coupled Thermal-El-Mechanical Behaviors of Thermoelectric Devices. Lanzhou: Lanzhou University dissertation, PhD, 2015. |
[59] | BUIST R J, ROMAN S J.Development of a Burst Voltage Measurement System for High-Resolution Contact Resistance Tests of Thermoelectric Heterojunctions. Eighteenth International Conference on Thermoelectrics. IEEE, 1999: 249-251. |
[60] | LIAO C N, LEE C H, CHEN W J.Effect of interfacial compound formation on contact resistivity of soldered junctions between bismuth telluride-based thermoelements and copper. Electrochem. Solid-State Lett., 2007, 10(9): P23-P25. |
[61] | FENG S P, CHANG Y H, YANG J, et al.Reliable contact fabrication on nanostructured Bi2Te3-based thermoelectric materials. Phys, Chem. Chem. Phys., 2013, 15(18): 6757-6762. |
[62] | LIN Y C, YANG C L, HUANG J Y,et al.Low-temperature bonding of Bi0.5Sb1.5Te3 thermoelectric material with Cu electrodes using a thin-film In interlayer. Metall. Mater. Trans. A, 2016, 47(9): 4767-4776. |
[63] | LEAVITT F A, BASS J C, ELSNER N B.Thermoelectric Module with Gapless Eggcrate. US5875098A, 1999. |
[64] | 陈立东,李菲,黄向阳, 等. 一种碲化铋基热电发电器件及其制造方法. CN102412366A, 2011. |
[65] | KRAEMER D, SUI J, MCENANEY K, et al.High thermoelectric conversion efficiency of MgAgSb-based material with hot-pressed contacts. Energy Environ. Sci., 2015, 8(4): 1299-1308. |
[66] | SUN Y, SHENG P, DI C, et al.Organic thermoelectric materials and devices based on p- and n-type poly (metal 1, 1, 2, 2-ethenetetrathiolate)s. Adv. Mater., 2012, 24(7): 932-937. |
[67] | SALVADOR J R, CHO J Y, YE Z, et al.Conversion efficiency of skutterudite-based thermoelectric modules. Phys. Chem. Chem. Phys., 2014, 16(24): 12510-12520. |
[68] | ABELES B, COHEN R W.Ge-Si thermoelectric power generator. [J]. Appl. Phys., 1964, 35(1): 247-248. |
[69] | TAGUCHI K, TERAKADO K, OGUSU M, et al.Linear-shaped Si-Ge thermoelectric module.Semiconductors, 2000: 53-57. |
[70] | NAKAHARA JF, FRANKLIN B, DEFILLIPO LE.Development of an improved performance SiGe unicouple. AIP Conf. Proc., 1995, 324: 809-814. |
[71] | MATSUBARA I, FUNAHASHI R, TAKEUCHI T, et al.Fabrication of an all-oxide thermoelectric power generator. Appl. Phys. Lett., 2001, 78(23): 3627-3629. |
[72] | FAN J, CHEN L, BAI S, et al.Joining of Mo to CoSb3 by spark plasma sintering by inserting a Ti interlayer. Mater. Lett., 2004, 58(30): 3876-3878. |
[73] | WOJCIECHOWSKI K T, ZYBALA R, MANIA R.High temperature CoSb3-Cu junctions. Microelectron. Reliab., 2011, 51(7): 1198-1202. |
[74] | ZHAO D G, LI X Y, JIANG W, et al.Fabrication of CoSb3/MoCu thermoelectric joint by one-step SPS and evaluation. [J]. Inorg. Mater., 2009, 24(3): 545-548. |
[75] | ZHAO D G, WANG L, CAI Y H, et al.One-step sintering of CoSb3 thermoelectric material and Cu-W alloy by spark plasma sintering. Mater. Sci. Forum., 2009: 389-393. |
[76] | TANG Y S, BAI S Q, REN D D, et al.Interface structure and electrical property of Yb0.3Co4Sb12/Mo-Cu element prepared by welding using Ag-Cu-Zn Solder. [J]. Inorg. Mater., 2015, 30(3): 256-260. |
[77] | REN Z F, LAN Y C, ZHANG Q Y.Advanced Thermoelectrics: Materials, Contacts, Devices, and System. CRC Press, 2018. |
[78] | ZHAO D, LI X, HE L, et al.High temperature reliability evaluation of CoSb3/electrode thermoelectric joints. Intermetallics, 2009, 17(3): 136-141. |
[79] | GU M, XIA X, LI X, et al.Microstructural evolution of the interfacial layer in the Ti-Al/Yb0. 6Co4Sb12 thermoelectric joints at high temperature. [J]. Alloys Compd., 2014, 610:665-670. |
[80] | FLEURIAL J P, CAILLAT T, CHI S C.Electrical Contacts for Skutterudite Thermoelectric Materials. US20120006376 A1, 2012. |
[81] | HASEZAKI K, TSUKUDA H, YAMADA A, et al.Thermoelectric Semiconductor and Electrode-fabrication and Evaluation of SiGe/electrode. XVI International Conference on Thermoelectrics. IEEE, 1997: 599-602. |
[82] | BENNETT G L.Space Applications. in: ROWE D. M. CRC Handbook of Thermoelectrics. BocaRaton: CRC press, 1995. |
[83] | MONDT J F.SP-100 Space Subsysterns. in: ROWE D. M. CRC Handbook of Thermoelectrics. Boca Raton: CRC press, 1995. |
[84] | COCKFIELD R D.Engineering Development Testing of the GPHS-RTG Converter. Intersociety Energy Conversion Engineering Conference, 1981: 321-325. |
[85] | LIN J S, TANIHATA K, MIYAMOTO Y, et al.Microstructure and property of (Si-MoSi2)/SiGe thermoelectric convertor unit. Functionally Graded Materials, 1996, 1997: 599-604. |
[86] | LIN J S, MIYAMOTO Y.One-step sintering of SiGe thermoelectric conversion unit and its electrodes. [J]. Mater. Res., 2000, 15(3): 647-652. |
[87] | YANG X Y, WU J H, GU M, et al.Fabrication and contact resistivity of W-Si3N4/TiB2-Si3N4/p-SiGe thermoelectric joints. Ceram. Int., 2016, 42(7): 8044-8050. |
[88] | ELGENK M S, SABER H H.Radioisotope power systems with skutterudite-based thermoelectric converters. American Institute of Physics, 2005: 485-494. |
[89] | WHALEN S A, APBLETT C A, ASELAGE T L.Improving power density and efficiency of miniature radioisotopic thermoelectric generators. [J]. Power Sources, 2008, 180(1): 657-663. |
[90] | EL-GENK M S, SABER H H, SAKAMOTO J, et al. Life Tests of a Skutterudites Thermoelectric Unicouple (MAR-03). 22nd International Conference on Thermoelectrics, 2003: 417-420. |
[91] | XIA X, HUANG X, LI X, et al.Preparation and structural evolution of Mo/SiOx protective coating on CoSb3-based filled skutterudite thermoelectric material. [J]. Alloys Compd., 2014, 604: 94-99. |
[92] | DONG H, LI X, HUANG X, et al.Improved oxidation resistance of thermoelectric skutterudites coated with composite glass. Ceram. Int., 2013, 39(4): 4551-4557. |
[93] | DONG H, LI X, TANG Y, et al.Fabrication and thermal aging behavior of skutterudites with silica-based composite protective coatings. [J]. Alloys Compd., 2012, 527: 247-251. |
[94] | CAILLAT T, CHI I, FIRDOSY S, et al.Skutterudite-based Advanced Thermoelectric Technology for Potential Integration into an Enhanced MMRTG (eMMRTG). XVI International Forum on Thermoelectricity, 2015. |
[95] | CLIN T, TURENNE S, VASILEVSKIY D, et al.Numerical simulation of the thermomechanical behavior of extruded bismuth telluride alloy module. [J]. Electron. Mater., 2009, 38(7): 994-1001. |
[96] | LI S L, LIU C K, HSU C Y, et al.Thermo-mechanical Analysis of Thermoelectric Modules. Microsystems Packaging Assembly and Circuits Technology Conference, 2010: 1-4. |
[97] | QUNGUI DU, JIANG X, ZHANG X, et al.Influence of structure parameters on performance of the thermoelectric module. J. Wuhan Uni. Tech. (Mater. Sci. Edition), 2011, 26(3): 464-468. |
[98] | SEETAWAN T, SEETAWAN U, RATCHASIN A, et al.Analysis of thermoelectric generator by finite element method. Procedia Eng., 2012, 32: 1006-1011. |
[99] | AL-MERBATI A S, YILBAS B S, SAHIN A Z. Thermodynamics and thermal stress analysis of thermoelectric power generator: influence of pin geometry on device performance. Appl. Therm. Eng., 2013, 50(1): 683-692. |
[100] | WU G, YU X.A holistic 3D finite element simulation model for thermoelectric power generator element. Energy Convers. Manage., 2014, 86(10): 99-110. |
[101] | YU H, ZHANG Z, QIU Q, et al.Performance of thermoelectric generator with ANSYS. Trans. China Electrotech. Soc., 2014, 29(7): 253-260. |
[102] | TURENNE S, CLIN T, VASILEVSKIY D, et al.Finite element thermomechanical modeling of large area thermoelectric generators based on bismuth telluride alloys. [J]. Electron. Mater., 2010, 39(9): 1926-1933. |
[103] | GAO J L, DU Q G, ZHANG X D, et al.Thermal stress analysis and structure parameter selection for a Bi2Te3-based thermoelectric module. [J]. Electron. Mater., 2011, 40(5): 884-888. |
[104] | CHEN G, MU Y, ZHAI P, et al.An investigation on the coupled thermal-mechanical-electrical response of automobile thermoelectric materials and devices. [J]. Electron. Mater., 2013, 42(7): 1762-1770. |
[105] | ERTURUNA U, ERERMISB K. MOSSIA K.Effect of various leg geometries on thermo-mechanical and power generation performance of thermoelectric devices.Appl. Therm. Eng., 2014, 73(1): 128-141. |
[106] | ANATYCHUK L I, LUSTE O J.On the Reliability of Thermoelectric Cooling and Generator Modules. 17th International Conference on Thermoelectrics, 1998: 101-104. |
[107] | SETTY K, SUBBARAYAN G, NGUYEN L.Power cycling reliability, failure analysis and acceleration factors of Pb-free solder joints. Proceedings Electronic Components and Technology, 2005, 1: 907-915. |
[108] | CHOI H S, SEO W S, CHOI D K.Prediction of reliability on thermoelectric module through accelerated life test and physics-of-failure. Electron. Mater. Lett., 2011, 7(3): 271-275. |
[109] | PARK W, BARAKO M T, MARCONNET A M, et al.Effect of Thermal Cycling on Commercial Thermoelectric Modules. Thermal and Thermomechanical Phenomena in Electronic Systems. IEEE, 2012: 107-112. |
[110] | BARAKO M T, PARK W, MARCONNET A M, et al.A Reliability Study with Infrared Imaging of Thermoelectric Modules Under Thermal Cycling. Thermal and Thermomechanical Phenomena in Electronic Systems, IEEE, 2012: 86-92. |
[111] | BARAKO M T, MARCONNET A M, ASHEGHI M, et al.Thermal cycling, mechanical degradation, and the effective figure of merit of a thermoelectric module. [J]. Electron. Mater., 2013, 42(3): 372-381. |
[112] | DING L C, AKBARZADEH A, DATE A.Performance and reliability of commercially available thermoelectric cells for power generation. Appl. Therm. Eng., 2016, 102: 548-556. |
[113] | KARRI N K, MO C.Reliable thermoelectric module design under opposing requirements from structural and thermoelectric considerations. [J]. Electron. Mater., 2018, 47(6): 3127-3135. |
[114] | TENORIO H C R L, VIEIRA D A, SOUZA C P D. Measurement of parameters and degradation of thermoelectric modules. IEEE Instru. Meas. Mag., 2017, 20(2): 13-19. |
[115] | ZHAO D, LI X, HE L, et al.Interfacial evolution behavior and reliability evaluation of CoSb3/Ti/Mo-Cu thermoelectric joints during accelerated thermal aging. [J]. Alloys Compd., 2009, 477(1/2): 425-431. |
[116] | GU M, BAI S, XIA X, et al. Study on the high temperature interfacial stability of Ti/Mo/Yb0.3Co4Sb12 thermoelectric joints. Appl. Sci., 2017, 7(9): 952-1-10. |
[1] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
[2] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[3] | CHEN Qiang, BAI Shuxin, YE Yicong. Highly Thermal Conductive Silicon Carbide Ceramics Matrix Composites for Thermal Management: a Review [J]. Journal of Inorganic Materials, 2023, 38(6): 634-646. |
[4] | LIN Junliang, WANG Zhanjie. Research Progress on Ferroelectric Superlattices [J]. Journal of Inorganic Materials, 2023, 38(6): 606-618. |
[5] | NIU Jiaxue, SUN Si, LIU Pengfei, ZHANG Xiaodong, MU Xiaoyu. Copper-based Nanozymes: Properties and Applications in Biomedicine [J]. Journal of Inorganic Materials, 2023, 38(5): 489-502. |
[6] | YUAN Jingkun, XIONG Shufeng, CHEN Zhangwei. Research Trends and Challenges of Additive Manufacturing of Polymer-derived Ceramics [J]. Journal of Inorganic Materials, 2023, 38(5): 477-488. |
[7] | YOU Junqi, LI Ce, YANG Dongliang, SUN Linfeng. Double Dielectric Layer Metal-oxide Memristor: Design and Applications [J]. Journal of Inorganic Materials, 2023, 38(4): 387-398. |
[8] | DU Jianyu, GE Chen. Recent Progress in Optoelectronic Artificial Synapse Devices [J]. Journal of Inorganic Materials, 2023, 38(4): 378-386. |
[9] | YANG Yang, CUI Hangyuan, ZHU Ying, WAN Changjin, WAN Qing. Research Progress of Flexible Neuromorphic Transistors [J]. Journal of Inorganic Materials, 2023, 38(4): 367-377. |
[10] | QI Zhanguo, LIU Lei, WANG Shouzhi, WANG Guogong, YU Jiaoxian, WANG Zhongxin, DUAN Xiulan, XU Xiangang, ZHANG Lei. Progress in GaN Single Crystals: HVPE Growth and Doping [J]. Journal of Inorganic Materials, 2023, 38(3): 243-255. |
[11] | LIN Siqi, LI Airan, FU Chenguang, LI Rongbing, JIN Min. Crystal Growth and Thermoelectric Properties of Zintl Phase Mg3X2 (X=Sb, Bi) Based Materials: a Review [J]. Journal of Inorganic Materials, 2023, 38(3): 270-279. |
[12] | ZHANG Chaoyi, TANG Huili, LI Xianke, WANG Qingguo, LUO Ping, WU Feng, ZHANG Chenbo, XUE Yanyan, XU Jun, HAN Jianfeng, LU Zhanwen. Research Progress of ScAlMgO4 Crystal: a Novel GaN and ZnO Substrate [J]. Journal of Inorganic Materials, 2023, 38(3): 228-242. |
[13] | CHEN Kunfeng, HU Qianyu, LIU Feng, XUE Dongfeng. Multi-scale Crystallization Materials: Advances in in-situ Characterization Techniques and Computational Simulations [J]. Journal of Inorganic Materials, 2023, 38(3): 256-269. |
[14] | LIU Yan, ZHANG Keying, LI Tianyu, ZHOU Bo, LIU Xuejian, HUANG Zhengren. Electric-field Assisted Joining Technology for the Ceramics Materials: Current Status and Development Trend [J]. Journal of Inorganic Materials, 2023, 38(2): 113-124. |
[15] | XIE Bing, CAI Jinxia, WANG Tongtong, LIU Zhiyong, JIANG Shenglin, ZHANG Haibo. Research Progress of Polymer-based Multilayer Composite Dielectrics with High Energy Storage Density [J]. Journal of Inorganic Materials, 2023, 38(2): 137-147. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||