Journal of Inorganic Materials ›› 2018, Vol. 33 ›› Issue (10): 1059-1064.DOI: 10.15541/jim20180041
Special Issue: 介电储能陶瓷
• RESEARCH PAPER • Previous Articles Next Articles
WANG Lu1, KONG Wen-Jie2, LUO Hang1, ZHOU Xue-Fan1, ZHOU Ke-Chao1, ZHANG Dou1
Received:
2018-01-29
Revised:
2018-04-14
Published:
2018-10-20
Online:
2018-09-25
About author:
WANG Lu. E-mail: znwanglu@163.com
Supported by:
CLC Number:
WANG Lu, KONG Wen-Jie, LUO Hang, ZHOU Xue-Fan, ZHOU Ke-Chao, ZHANG Dou. Dielectric and Energy Storage Property of Dielectric Nanocomposites with BaTiO3 Nanofibers[J]. Journal of Inorganic Materials, 2018, 33(10): 1059-1064.
Fig. 1 (a) SEM image of BaTiO3 nanofibers; (b) XRD patterns of Na2Ti3O7 and BaTiO3 nanofibers; (c) TEM image, (d) HRTEM and FFT image of BaTiO3 nanofibers
Contents of BaTiO3 nanofibers | β | E0/(kV∙mm-1) |
---|---|---|
0 | 8.24 | 397 |
5vol% | 6.16 | 244 |
10vol% | 5.46 | 198 |
20vol% | 2.51 | 72 |
Table 1 Weibull distribution of the dielectric breakdown strength of composites filled with various BaTiO3 nanofibers
Contents of BaTiO3 nanofibers | β | E0/(kV∙mm-1) |
---|---|---|
0 | 8.24 | 397 |
5vol% | 6.16 | 244 |
10vol% | 5.46 | 198 |
20vol% | 2.51 | 72 |
Fig. 5 Displacement hysteresis loops of composites filled with various BaTiO3 nanofibers(a) 5vol%, (b) 10vol%, (c) 20vol% and (d) energy density of composites
[1] | DANG Z M, YUAN J K, YAO S H, et al. Flexible nanodielectric materials with high permittivity for power energy storage. Advanced Materials, 2013, 25(44): 6334-6365. |
[2] | YAO L M, PAN Z B, LIU S H,et al. Significantly enhanced energy density in nanocomposite capacitors combining the TiO2 nanorod array with poly(vinylidene fluoride). ACS Applied Materials & Interfaces, 2016, 8(39): 26343-26351. |
[3] | SHEN Y, SHEN D S, ZHANG X,et al. High energy density of polymer nanocomposites at a low electric field induced by modulation of their topological-structure. Journal of Materials Chemistry A, 2016, 4(21): 8359-8365. |
[4] | WANG C Y, CHEN W T, XU C,et al. Fluorinated polyimide/ POSS hybrid polymers with high solubility and low dielectric constant. Chinese Journal of Polymer Science, 2016, 34(11): 1363-1372. |
[5] | ZIA T H, KHAN A N, HUSSAIN M,et al. Enhancing dielectric and mechanical behaviors of hybrid polymer nanocomposites based on polystyrene, polyaniline and carbon nanotubes coated with polyaniline. Chinese Journal of Polymer Science, 2016, 34(12): 1500-1509. |
[6] | ZHANG X, SHEN Y, ZHANG Q,et al. Ultrahigh energy density of polymer nanocomposites containing BaTiO3@TiO2 nanofibers by atomic-scale interface engineering. Advanced Materials, 2015, 27(5): 819-824. |
[7] | XIE L, HUANG X, YANG K,et al. "Grafting to" route to PVDF-HFP-GMA/BaTiO3 nanocomposites with high dielectric constant and high thermal conductivity for energy storage and thermal management applications. Journal of Materials Chemistry A, 2014, 2(15): 5244-5251. |
[8] | TANG H X, LIN Y R, SODANO H A.Nanocomposite capacitors: enhanced energy storage in nanocomposite capacitors through aligned PZT nanowires by uniaxial strain assembly.Advanced Energy Materials, 2012, 2(4): 469-476. |
[9] | LUO H, ROSCOW J, ZHOU X F,et al. Ultra-high discharged energy density capacitor using high aspect ratio Na0.5Bi0.5TiO3 nanofibers. Journal of Materials Chemistry A, 2017, 5(15): 7091-7102. |
[10] | XIE L, HUANG X, HUANG Y,et al. Core-shell structured hyperbranched aromatic polyamide/BaTiO3 hybrid filler for poly (vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) nanocomposites with the dielectric constant comparable to that of percolative composites. ACS Applied Materials & Interfaces, 2013, 5(5): 1747-1756. |
[11] | HU P H, SONG Y, LIU H Y,et al. Largely enhanced energy density in flexible P(VDF-TrFE) nanocomposites by surface-modified electrospun BaSrTiO3 fibers. Journal of Materials Chemistry A, 2013, 1(5): 1688-1693. |
[12] | BOWEN C P, NEWNHAM R E, RANDALL C A.Dielectric properties of dielectrophoretically assembled particulate-polymer composites.Journal of Materials Research, 1998, 13(1): 205-210. |
[13] | LUO H, ZHANG D, JIANG C,et al. Improved dielectric properties and energy storage density of poly(vinylidene fluoride-co- hexafluoropropylene) nanocomposite with hydantoin epoxy resin coated BaTiO3. ACS Applied Materials & Interfaces, 2015, 7(15): 8061-8069. |
[14] | YANG Y, SUN H L, ZHU B P,et al. Enhanced dielectric performance of three phase percolative composites based on thermoplastic- ceramic composites and surface modified carbon nanotube. Applied Physics Letters, 2015, 106(1): 012902. |
[15] | ZHAN J Y, TIAN G F, WU Z P,et al. Preparation of polyimide/ BaTiO3/Ag nanocomposite films via in situ technique and study of their dielectric behavior. Chinese Journal of Polymer Science, 2014, 32(4): 424-431. |
[16] | PRATEEK, THAKUR V K, GUPTA R K. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects.Chemical Reviews, 2016, 116(7): 4260-4317. |
[17] | TANG H X, LIN Y R, SADANO H A.Synthesis of high aspect ratio BaTiO3 nanowires for high energy density nanocomposite capacitors.Advanced Energy Materials, 2013, 3(4): 451-456. |
[18] | RAHIMABADY M, MIRSHEKARLOO M S, YAO K,et al. Dielectric behaviors and high energy storage density of nanocomposites with core-shell BaTiO3@TiO2 in poly(vinylidene fluoride- hexafluoropropylene). Physical Chemistry Chemical Physics, 2013, 15(38): 16242-16248. |
[19] | TANG H X, LIN Y R, ANDREWS C,et al. Nanocomposites with increased energy density through high aspect ratio PZT nanowires. Nanotechnology, 2011, 22(1): 15702-15709. |
[20] | PAN Z B, YAO L M, ZHAI J W,et al. High-energy-density polymer nanocomposites composed of newly structured one-dimensional BaTiO3@Al2O3 nanofibers. ACS Applied Materials & Interfaces, 2017, 9(4): 4024-4033. |
[21] | TANG H X, SODANO H A.Ultra high energy density nanocomposite capacitors with fast discharge using Ba0.2Sr0.8TiO3 nanowires.Nano Letters, 2013, 13(4): 1373-1379. |
[22] | WANG Y, CUI J, YUAN Q,et al. Significantly enhanced breakdown strength and energy density in sandwich-structured barium titanate/poly(vinylidene fluoride) nanocomposites. Advanced Materials, 2015, 27(42): 6658-6663. |
[1] | LI Yicun, LIU Xuedong, HAO Xiaobin, DAI Bing, LYU Jilei, ZHU Jiaqi. Rapid Growth of Single Crystal Diamond at High Energy Density by Plasma Focusing [J]. Journal of Inorganic Materials, 2023, 38(3): 303-309. |
[2] | XIE Bing, CAI Jinxia, WANG Tongtong, LIU Zhiyong, JIANG Shenglin, ZHANG Haibo. Research Progress of Polymer-based Multilayer Composite Dielectrics with High Energy Storage Density [J]. Journal of Inorganic Materials, 2023, 38(2): 137-147. |
[3] | WEI Tingting, XU Huarui, ZHU Guisheng, LONG Shenfeng, ZHANG Xiuyun, ZHAO Yunyun, JIANG Xupeng, SONG Jinjie, GUO Ningjie, GONG Yipeng. Preparation and Properties of BaTiO3 Ceramics by Low Temperature Cold Sintering [J]. Journal of Inorganic Materials, 2022, 37(8): 903-910. |
[4] | ZHAO Yuyao, OUYANG Jun. Columnar Nanograined BaTiO3 Ferroelectric Thin Films Integrated on Si with a Sizable Dielectric Tunability [J]. Journal of Inorganic Materials, 2022, 37(6): 596-602. |
[5] | LI Wangguo, LIU Dianguang, WANG Kewei, MA Baisheng, LIU Jinling. High Entropy Oxide Ceramics (MgCoNiCuZn)O: Flash Sintering Synthesis and Properties [J]. Journal of Inorganic Materials, 2022, 37(12): 1289-1294. |
[6] | LI Sheng, SONG Guoqiang, ZHANG Yuanyuan, TANG Xiaodong. Preparation and Physical Property of BTO-based Multiferroic Ceramics [J]. Journal of Inorganic Materials, 2022, 37(1): 79-85. |
[7] | LIANG Hanqin, YIN Jinwei, ZUO Kaihui, XIA Yongfeng, YAO Dongxu, ZENG Yuping. Mechanical and Dielectric Properties of Hot-pressed Si3N4 Ceramics with BaTiO3 Addition [J]. Journal of Inorganic Materials, 2021, 36(5): 535-540. |
[8] | WANG Tong,WANG Yuanhao,YANG Haibo,GAO Shuya,WANG Fen,LU Yawen. Dielectric and Energy Storage Property of BaTiO3-ZnNb2O6 Ceramics [J]. Journal of Inorganic Materials, 2020, 35(4): 431-438. |
[9] | WANG Wu-Lian, ZHANG Jun, WANG Qiu-Shi, CHEN Liang, LIU Zhao-Ping. High-quality Fe4[Fe(CN)6]3 Nanocubes: Synthesis and Electrochemical Performance as Cathode Material for Aqueous Sodium-ion Battery [J]. Journal of Inorganic Materials, 2019, 34(12): 1301-1308. |
[10] | SONG Jian-Min, DAI Xiu-Hong, LIANG Jie-Tong, ZHAO Lei, ZHOU Yang, GE Da-Yong, MENG Xu-Dong, LIU Bao-Ting. Resistive Switching Effect and Dielectric Property of Epitaxial BiFeO3 Thin Films by Off-axis Magnetron Sputtering [J]. Journal of Inorganic Materials, 2018, 33(9): 1017-1021. |
[11] | SUN Dan-Dan, ZHANG Jia-Liang, WU Yan-Qing, ZHANG Zhong-Qiu, LIU Da-Kang. Raw-material Pre-milling on Physical Property of BaTiO3 Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2017, 32(6): 615-620. |
[12] | MA Jian, ZHANG Bo-Ping, CHEN Jian-Yin. Excess Bi and Cooling Method on Phase Structure and Electrical Properties of BiFeO3-BaTiO3 Lead-free Ceramics [J]. Journal of Inorganic Materials, 2017, 32(10): 1035-1041. |
[13] | LI Jia-Le, XIANG Jun, YE Qin, LIU Min, SHEN Xiang-Qian. Microwave Absorption Properties of Double-layer Absorbing Coatings Based on Ni0.4Co0.2Zn0.4Fe2O4 and BaTiO3 Nanofibers [J]. Journal of Inorganic Materials, 2015, 30(5): 479-486. |
[14] | GUO Xiang-Xin, HUANG Shi-Ting, ZHAO Ning, CUI Zhong-Hui, FAN Wu-Gang, LI Chi-Lin, LI Hong. Rapid Development and Critical Issues of Secondary Lithium-air Batteries [J]. Journal of Inorganic Materials, 2014, 29(2): 113-123. |
[15] | XIE Hui, YUAN Shu-Juan, KANG Bao-Juan, LU Bo, CAO Shi-Xun, ZHANG Jin-Cang. Giant Magnetodielectric Effect and Magnetic Properties of Ho0.5Pr0.5FeO3 Ceramics [J]. Journal of Inorganic Materials, 2014, 29(1): 77-80. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||