[1] |
HAO X H.A review on the dielectric materials for high energy- storage application.J. Adv. Dielect., 2013(1): 1330001-1330014.
|
[2] |
YAO L M, PAN Z B, LIU S H,et al. Significantly enhanced energy density in nanocomposite capacitors combining the TiO2 nanorod array with poly(vinylidene fluoride). ACS Appl. Mater. & Interfaces, 2016, 8(39): 26343-26351.
|
[3] |
HOU C M, HUANG W C, ZHAO W B,et al. Ultrahigh energy density in SrTiO3 film capacitors. ACS Appl. Mater. & Interfaces, 2017, 9(24): 20484-20490.
|
[4] |
CHANHAN A, PATEL S, VAISH R,et al. Anti-ferroelectric ceramics for high energy density capacitors. Materials, 2015, 8(12): 8009-8031.
|
[5] |
YAO Z H, SONG Z, HAO H,et al. Homogeneous/ inhomogeneous-structured dielectrics and their energy-storage performances. Adv. Mater., 2017, 29(20): 1601727-1601741.
|
[6] |
WEI W, YAN H, WANG T,et al. Reverse boundary layer capacitor model in glass/ceramic composites for energy storage applications. J. Appl. Phys., 2013, 113(2): 024103-024107.
|
[7] |
TOPRAK A, TIGLI O.Piezoelectric energy harvesting: state- of-the-art and challenges.Appl. Phys. Rev., 2014, 1(3): 031104-031117.
|
[8] |
LI Y X, XIE J L, CHU Z M,et al. Dielectric and energy storage properties of ceramic/PVDF composites with titanate coupling agents. Ferroelectrics, 2013, 452(1): 101-106.
|
[9] |
YI D, YUAN J C, LIU H Y,et al. Influence of Al2O3 additive on the dielectric behavior and energy density of Ba0.5Sr0.5TiO3 ceramics. J. Electroceram., 2012, 29(2): 95-98.
|
[10] |
HUANG Y H, WU Y J, QIU W J,et al. Enhanced energy storage density of Ba0.4Sr0.6TiO3-MgO composite prepared by spark plasma sintering. J. Eur. Ceram. Soc., 2015, 35(5): 1469-1476.
|
[11] |
LI YONG-XIANG.Some hot topics in electroceramics research.Journal of Inorganic Materials, 2014, 29(1): 1-5.
|
[12] |
LI J J, PAISAN K, HAN K,et al. New route toward high-energy-density nanocomposites based on chain-end functionalized ferroelectric polymers. Chem. Mater., 2010, 22(18): 5350-5357.
|
[13] |
PARIZI S S, MELLINGER A, CARUNTU G,et al. Ferroelectric barium titanate nanocubes as cordially, apacitive building best wishes, locks for energy storage applications. ACS Appl. Mater. & Interfaces, 2014, 6(20): 17506-17517.
|
[14] |
WU T, PU Y P, ZONG T T,et al. Microstructures and dielectric properties of Ba0.4Sr0.6TiO3 ceramics with BaO-TiO2-SiO2 glass- ceramics addition. J. Alloy. Compd., 2014, 584(25): 461-465.
|
[15] |
NICHOLAS J S, BADRI R, MICHAEL T L,et al. Alkali-free glass as a high energy density dielectric material. Mater. Lett., 2009, 63(15): 1245-1248.
|
[16] |
ACOSTA M, ZANG J D, JO W,et al. High-temperature dielectrics in CaZrO3-modified Bi1/2Na1/2TiO3-based lead-free ceramics. J. Eur. Ceram. Soc., 2012, 32(16): 4327-4334.
|
[17] |
RAENGTHON N, SEBASTIAN T, RAENGTHON N N,et al. BaTiO3-Bi(Zn1/2Ti1/2)O3-BiScO3 ceramics for high-temperature capacitor applications. J. Am. Ceram. Soc., 2012, 95(11): 3554-3561.
|
[18] |
MUHAMMAD R, IQBAL Y, REANEY I M,et al. BaTiO3- Bi(Mg2/3Nb1/3)O3 ceramics for high-temperature capacitor applications. J. Am. Ceram. Soc., 2016, 99(6): 2089-2095.
|
[19] |
WANG X L, ZHANG L, HAO X H,et al. High energy-storage performance of 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 relaxor ferroelectric thin films prepared by RF magnetron sputtering. Mater. Res. Bull., 2015, 65: 73-79.
|
[20] |
PENG B L, ZHANG Q, LI X,et al. Giant electric energy density in epitaxial lead-free thin films with coexistence of ferroelectrics and antiferroelectrics. Adv. Electron. Mater., 2015, 1(5): 1500052-1500058.
|
[21] |
WANG J H, SUN N N, LI Y,et al. Effects of mn doping on dielectric properties and energy-storage performance of Na0.5Bi0.5TiO3 thick films. Ceram. Int., 2017, 43(10): 7804-7809.
|
[22] |
CHAO S, DOGAN F.Processing and dielectric properties of TiO2 thick films for high-energy density capacitor applications. Int. J. Appl. Ceram. Tec., 2011, 8(6): 1363-1373.
|
[23] |
HU Q Y, JIN L, WANG T,et al. Dielectric and temperature stable energy storage properties of 0.88BaTiO3-0.12Bi(Mg1/2Ti1/2)O3 bulk ceramics. J. Alloy. Compd., 2015, 640: 416-420.
|
[24] |
KWON D K, LEE H M.Temperature stable high energy density capacitors using complex perovskite thin films.IEEE. T. Ultrason. Ferr., 2012, 59(9): 1894-1899.
|
[25] |
DAMJANOVIC D, KLEIN D, LI J,et al. What can be expected from lead-free piezoelectric materials. Funct. Mater. Lett., 2010, 3(1): 5-13.
|
[26] |
TAKENAKA T, NAGATA H.Current status and prospects of lead-free piezoelectric ceramics.J. Eur. Ceram. Soc., 2005, 25(12): 2693-2700.
|
[27] |
WANG YA-JUN, WU XIAO-JUAN, ZENG QING-XUAN.Review on barium titanate based composites with high energy storage density.Science&Technology Review, 2012, 30(10): 65-71.
|
[28] |
GU YI-TAO, LIU HONG-BO, MA HAI-HUA,et al. Research progress of dielectric materials for energy storage. Insulating Materials, 2015, 48(11): 1-13.
|
[29] |
BURN I, SMYTH D M.Energy storage in ceramic dielectrics.J. Mater. Sci., 1972, 7(3): 339-343.
|
[30] |
LOVE G R.Energy storage in ceramic dielectric.J. Am. Ceram. Soc., 1990, 73(2): 323-328.
|
[31] |
FLETCHER N H, HILTON A D, RICKETTS B W.Optimization of energy storage density in ceramic capacitors.J. Phys. D: Appl. Phys., 1996, 29: 253-258.
|
[32] |
ZHANG L, HAO X H, ZHANG L W.Enhanced energy-storage performances of Bi2O3-Li2O added (1-x)(Na1/2Bi1/2)TiO3-xBaTiO3 thick films. Ceram. Int., 2014, 40(6): 8847-8851.
|
[33] |
XIU S M, XIAO S, XUE S X,et al. Effect of different Al/Si ratios on the structure and energy storage properties of strontium barium niobate-based glass-ceramics. J. Electron. Mater., 2016, 45(2): 1017-1022.
|
[34] |
ZHAO X J, PENG G R, ZHAN Z J,et al. Structure change and energy storage property of poly(vinylidene fluoride hexafluoropropylene)/poly(methyl methacrylate) blends. Polym. Sci. Ser. A., 2015, 57(4): 452-459.
|
[35] |
WEI M, ZHANG J H, LIU J F,et al. Effect of multiple times pre-sintering on the dielectric properties of TiO2/glass composite. J. Mater. Sci-Mater. El., 2017, 28(1): 526-531.
|
[36] |
SHAY D P, PODRAZA N J, DONNELLY N J,et al. High energy density, high temperature capacitors utilizing mn-doped 0.8CaTiO3- 0.2CaHfO3 Ceramics. J. Am. Ceram. Soc., 2012, 95(4): 1348-1355.
|
[37] |
JIANG S, ZHANG L, ZHANG G,et al. Effect of Zr: Sn ratio in the lead lanthanum zirconate stannate titanate anti-ferroelectric ceramics on energy storage properties. Ceram. Int., 2013, 39(5): 5571-5575.
|
[38] |
DANG Z M, YUAN J K, YAO S H,et al. Flexible nanodielectric materials with high permittivity for power energy storage. Adv. Mater., 2013, 25(44): 6334-6365.
|
[39] |
QING Y C, WEN Q L, LUO F,et al. Graphene nanosheets/BaTiO3 ceramics as highly efficient electromagnetic interference shielding materials in the x-band. J. Mater. Chem. C, 2016, 4(2): 371-375.
|
[40] |
TAKASHI T, TAKUYA H, HIROAKI T,et al. Fabrication of lead-free semiconducting ceramics using BaTiO3-(Bi1/2Na1/2)TiO3 system by adding CaO. J. Ceram. Soc. Jpn., 2011, 119(1395): 828-831.
|
[41] |
WANG X R, ZHANG Y, SONG X Z,et al. Glass additive in barium titanate ceramics and its influence on electrical breakdown strength in relation with energy storage properties. J. Eur. Ceram. Soc., 2012, 32(3): 559-567.
|
[42] |
YOUNG A, HILMAS G, ZHANG S C,et al. Effect of liquid- phase sintering on the breakdown strength of barium titanate. J. Am. Ceram. Soc., 2007, 90(5): 1504-1510.
|
[43] |
SU X F, RIGGS B C, TOMOZAWA M,et al. Preparation of BaTiO3/low melting glass core-shell nanoparticles for energy storage capacitor applications. J. Mater. Chem. A, 2014, 2(42): 18087-18096.
|
[44] |
EJAZ M, PULI VS, ELUPULA R,et al. Core-shell structured poly(glycidyl methacrylate)/BaTiO3 nanocomposites prepared by surface-initiated atom transfer radical polymerization: a novel material for high energy density dielectric storage. J. Polym. Sci. Pol. Chem., 2015, 53(6): 719-728.
|
[45] |
KWON D K, LEE H M.Temperature stable high energy density capacitors using complex perovskite thin films.IEEE. T. Ultrason. Ferr., 2012, 59(9): 1894-1899.
|
[46] |
HUANG X Y, JIANG P K.Core-shell structured high-k polymer nanocomposites for energy storage and dielectric applications.Adv. Mater., 2015, 27(3): 546-554.
|
[47] |
XU W H, DING Y C, JIANG S H,et al. Polyimide/BaTiO3/ MWCNTs three-phase nanocomposites fabricated by electrospinning with enhanced dielectric properties. Mater. Lett., 2014, 135: 158-161.
|
[48] |
OGIHARA H, RANDALL C A, SUSAN T M.High-energy density capacitors utilizing 0.7BaTiO3-0.3BiScO3 ceramics.J. Am. Ceram. Soc., 2009, 92(8): 1719-1724.
|
[49] |
NEUSEL C, JELITTO H, SCHNEIDER GA.Electrical conduction mechanism in bulk ceramic insulators at high voltages until dielectric breakdown.J. Appl. Phys., 2015, 117(15): 154902-154910.
|
[50] |
LIM J B, ZZHANG S J, KIM N,et al. High-temperature dielectrics in the BiScO3-BaTiO3-(K1/2Bi1/2)TiO3 ternary system. J. Am. Ceram. Soc., 2009, 92(3): 679-682.
|
[51] |
WANG T, JIN L, LI C C,et al. Relaxor ferroelectric BaTiO3- Bi(Mg2/3Nb1/3)O3 ceramics for energy storage application. J. Am. Ceram. Soc., 2015, 98(2): 559-566.
|
[52] |
SHEN Z B, WANG X H, LUO B C,et al. BaTiO3-BiYbO3 perovskite materials for energy storage applications. J. Mater. Chem. A, 2015, 3(35): 18146-18153.
|
[53] |
WU L W, WANG X H, LI L T,et al. Lead-free BaTiO3- Bi(Zn2/3Nb1/3)O3 weakly coupled relaxor ferroelectric materials for energy storage. RSC Adv., 2016, 6(17): 14273-14282.
|
[54] |
LI W B, ZHOU D, PANG L X.Novel barium titanate based capacitors with high energy density and fast discharge performance.J. Mater. Chem. A, 2017, 5(37): 19607-19612.
|
[55] |
YUAN Q B, YAO F Z, WANG Y F.Relaxor-ferroelectric 0.9BaTiO3-0.1Bi(Zn1/2Zr1/2)O3 ceramics capacitors with high energy density and temperature stable energy storage properties.J. Mater. Chem. C, 2017, 5(37): 9552-9558.
|
[56] |
XU R, XU Z, FENG Y J,et al. Temperature dependence of energy storage in Pb0.90La0.04Ba0.04[(Zr0.7Sn0.3)0.88Ti0.12]O3 antiferroelectric ceramics. J. Am. Ceram. Soc., 2016, 99(9): 2984-2988.
|
[57] |
MOREAU J M, MICHEL C, GERSON R,et al. Ferroelectric BiFeO3 X-ray and neutron diffraction study. J. Phys. Chem. Solids., 1971, 32(6): 1315-1335.
|
[58] |
TEAGUE J R, GERSON R, JAMES W J.Dielectic hysteresis in single crystal BiFeO3.Solid State Commun., 1970, 8(13): 1073-1074.
|
[59] |
KHANSUR N H, ROJAC T, DAMJANOVIC D,et al. Electric- field-induced domain switching and domain texture relaxations in bulk bismuth ferrite. J. Am. Ceram. Soc., 2015, 98(12): 3884-3890.
|
[60] |
WANG T, JIN L, TIAN Y,et al. Microstructure and ferroelectric properties of Nb2O5-modified BiFeO3-BaTiO3 lead-free ceramics for energy storage. Mater. Lett., 2014, 137: 79-81.
|
[61] |
ZHENG D, ZUO R D.Enhanced energy storage properties in La(Mg1/2Ti1/2)O3-modified BiFeO3-BaTiO3 lead-free relaxor ferroelectric ceramics within a wide temperature range.J. Eur. Ceram. Soc., 2017, 37(1): 413-418.
|
[62] |
ZHENG D G, ZUO R Z, ZHANG D S,et al. Novel BiFeO3-BaTiO3-Ba(Mg1/3Nb2/3)O3 lead-free relaxor ferroelectric ceramics for energy-storage capacitors. J. Am. Ceram. Soc., 2015, 98(9): 2692-2695.
|
[63] |
CORREIA T M, MILLEN M M, ROKOSZ M K.A lead-free and high-energy density ceramic for energy storage applications.J. Am. Ceram. Soc., 2013, 96(9): 2699-2702.
|
[64] |
CORREIA T, STEWART M, ELLMORE A, et al. Lead-free ceramics with high energy density. Lead-free ceramics with high energy density and reduced losses for high temperature applications. Adv. Eng. Mater., 2017, 19(6): 1700019-1-5.
|
[65] |
PAN H, ZEENG Y, SHEN Y,et al. BiFeO3-SrTiO3 thin film as a new lead-free relaxor ferroelectric capacitor with ultrahigh energy storage performance. J. Mater. Chem. A, 2017, 5(12): 5920-5926.
|
[66] |
CHEN X L, HE F, CHEN J,et al. An approach to further improve piezoelectric and ferroelectric properties of (K0.5Na0.5)NbO3 ceramic. J. Mater. Sci-Mater. El., 2014, 25(6): 2634-2637.
|
[67] |
DU H L, LIU D J, TANG F S,et al. Microstructure, piezoelectric, and ferroelectric properties of Bi2O3-added (K0.5Na0.5)NbO3 lead- free ceramics. J. Am. Ceram. Soc., 2007, 90(9): 2824-2829.
|
[68] |
LI F L, KWOK K W.K0.5Na0.5NbO3-based lead-free transparent electro-optic ceramics prepared by pressureless sintering.J. Am. Ceram. Soc., 2013, 96(11): 3557-3562.
|
[69] |
WU X, LU S B, KWOK K W,et al. Photoluminescence, electro- optic response and piezoelectric properties in pressureless- sintered Er-doped KNN-based transparent ceramics. J. Alloy. Compd., 2017, 695: 3573-3578.
|
[70] |
LI J T, BAI Y, QIN S Q.Direct and indirect characterization of electrocaloric effect in (Na, K)NbO3 based lead-free ceramics.Appl. Phys. Lett., 2016, 109(16): 162902-162904.
|
[71] |
WANG X J, WU J G, BRAHIM D.Enhanced electrocaloric effect near polymorphic phase boundary in lead-free potassium sodium niobate ceramics.Appl. Phys. Lett., 2017, 110(6): 063904-063908.
|
[72] |
ZHANG G F, LIU H X, YAO Z H,et al. Effects of Ca doping on the energy storage properties of (Sr, Ca)TiO3 paraelectric ceramics. J. Mater. Sci: Mater. Electron., 2015, 26(5): 2726-2732.
|
[73] |
NEUSEL C, SCHNEIDER G.Size-dependence of the dielectric breakdown strength from nano-to millimeter scale.J. Mech. Phys. Solids., 2014, 63: 201-213.
|
[74] |
TUNKASIRI T, RUJIJANAGUL G.Dielectric strength of fine grained barium titanate ceramics.J. Mater. Sci. Lett., 1996, 15(20): 1767-1769.
|
[75] |
SONG Z, LIU H X, ZHANG S J,et al. Effect of grain size on the energy storage properties of (Ba0.4Sr0.6)TiO3 paraelectric ceramics. J. Eur. Ceram. Soc., 2014, 34(5): 1209-1217.
|
[76] |
YE Y, ZHANG S C, DOGAN F,et al. Influence of nanocrystalline grain size on the breakdown strength of ceramic dielectrics. Proc-IEEE Int. Pulsed Power Conf., 2003, 1: 719-722.
|
[77] |
LEE H Y, CHO K H, NAM H D.Grain size and temperature dependence of electrical breakdown in BaTiO3 ceramic.Ferroelectrics, 2006, 334(1): 165-169.
|
[78] |
ZHAO L, LIU Q, GAO J,et al. Lead-free antiferroelectric silver niobate tantalate with high energy storage performance. Adv. Mater., 2017, 29(31): 1701824-1701831.
|
[79] |
HUANG Y H, WU Y J, QIU W J,et al. Enhanced energy storage density of Ba0.4Sr0.6TiO3-MgO composite prepared by spark plasma sintering. J. Eur. Ceram. Soc., 2015, 35(5): 1469-1476.
|
[80] |
ZHANG G Z, ZHU D Y, ZHANG X S,et al. High-energy storage performance of (Pb0.87Ba0.1La0.02)(Zr0.68Sn0.24Ti0.08)O3 antiferroelectric ceramics fabricated by the hot-press sintering method. J. Am. Ceram. Soc., 2015, 98(4): 1175-1181.
|
[81] |
KOSEC M, BOBNAR V, HROVAT M,et al. New lead-free relaxors based on the K0.5Na0.5NbO3-SrTiO3 solid solution. J. Mater. Res., 2004, 19(6): 1849-1854.
|
[82] |
LIU Z Y, FANH Q, ZHAO Y W,et al. Optical and tunable dielectric properties of K0.5Na0.5NbO3-SrTiO3 ceramics. J. Am. Ceram. Soc., 2016, 99(1): 146-151.
|
[83] |
WANG BIN-KE, TIAN XIAO-XIA, XU ZHUO,et al. Preparation and performances of KNN-based lead-free transparent ceramics. Acta Phys. Sin., 2012, 61(19): 197703-197707.
|
[84] |
QU B Y, DU H L, YANG Z T.Lead-free relaxor ferroelectric ceramics with high optical transparency and energy storage ability.J. Mater. Chem. C, 2016, 4(9): 1795-1803.
|
[85] |
YANG Z T, DU H L, QU S B,et al. Significantly enhanced recoverable energy storage density in potassium-sodium niobate- based lead free ceramics. J. Mater. Chem. A, 2016, 4(36): 13778-13785.
|
[86] |
SHAO T Q, DU H L, MA H,et al. Potassium-sodium niobate based lead-free ceramics: novel electrical energy storage materials. J. Mater. Chem. A, 2017, 5(2): 554-563.
|
[87] |
DONG G X, MA S W, DU J,et al. Dielectric properties and energy storage density in ZnO-doped Ba0.3Sr0.7TiO3 ceramics. Ceram. Int., 2009, 35(5): 2069-2075.
|
[88] |
GERMAN R M, SURI P, PARK S J.Review: liquid phase sintering.J. Mater. Sci., 2009, 44(1): 1-39.
|
[89] |
ZHANGQ M, WANG L, LUO J,et al. Improved energy storage density in barium strontium titanate by addition of BaO-SiO2-B2O3 glass. J. Am. Ceram. Soc., 2009, 92(8): 1871-1873.
|
[90] |
QU B Y, DU H L, YANG Z T,et al. Enhanced dielectric breakdown strength and energy storage density in lead-free relaxor ferroelectric ceramics prepared using transition liquid phase sintering. RSC Adv., 2016, 6(41): 34381-34389.
|
[91] |
QU B Y, DU H L, YANG Z T,et al. Large recoverable energy storage density and low sintering temperature in potassium- sodium niobate based ceramics for multilayer pulsed power capacitors. J. Am. Ceram. Soc., 2017, 100(4): 1517-1526.
|
[92] |
SHIGEMI A, WADA T.Crystallographic phase stabilities and electronic structures in AgNbO3 by first-principles calculation.Mol. Simulat., 2008, 34(10-15): 1105-1114.
|
[93] |
VERWERFT M, DYCK DV, BRABERS V M,et al. Electron microscopic study of the phase transformations in AgNbO3. Phys. Status. Solidi. A, 1989, 112(2): 451-466.
|
[94] |
TIAN Y, JIN L, ZHANG H F,et al. High energy density in silver niobate ceramics. J. Mater. Chem. A, 2016, 4(44): 17279-17288.
|
[95] |
ZHAO L, LIU Q, ZHANG S J,et al. Lead-free AgNbO3 anti- ferroelectric ceramics with an enhanced energy storage performance using MnO2 modification. J. Mater. Chem. C, 2016, 4(36): 8380-8384.
|
[96] |
MAHDI R I, MAJID W H A. Piezoelectric and pyroelectric properties of BNT-based ternary lead-free ceramic-polymer nanocomposites under different poling conditions.RSC Adv., 2016, 6(84): 81296-81309.
|
[97] |
LU Y Q, LI Y X.A review on lead-free piezoelectric ceramics studies in China.J. Adv. Dielect., 2011, 1(3): 269-288.
|
[98] |
PANDA P K.Review: environmental friendly lead-free piezoelectric materials.J. Mater. Sci., 2009, 44(19): 5408-5419.
|
[99] |
GAO F, DONG X L, MAO C L,et al. Energy-storage properties of 0.89Bi0.5Na0.5TiO3-0.06BaTiO3-0.05K0.5Na0.5NbO3 lead-free anti- ferroelectric ceramics. J. Am. Ceram. Soc., 2011, 94(12): 4382-4386.
|
[100] |
DING J X, LIU Y F, LUN Y,et al. Enhanced energy-storage properties of 0.89Bi0.5Na0.5TiO3-0.06BaTiO3-0.05K0.5Na0.5NbO3 lead-free anti-ferroelectric ceramics by two-step sintering method. Mater. Lett., 2014, 114: 107-110.
|
[101] |
FENG Q, YUAN C L, LIU X Y,et al. Microstructures and energy-storage properties of (1-x)(Na0.5Bi0.5)TiO3-xBaTiO3 with BaO-B2O3-SiO2 additions. J. Mater. Sci:Mater. Electron, 2015, 26(7): 5113-5119.
|
[102] |
CHEN P, CHU B J.Improvement of dielectric and energy storage properties in Bi(Mg1/2Ti1/2)O3-modified (Na1/2Bi1/2)0.92Ba0.08TiO3 ceramics.J. Eur. Ceram. Soc., 2016, 36(1): 81-88.
|
[103] |
CAO W P, LI W L, DAI X F,et al. Large electrocaloric response and high energy-storage properties over a broad temperature range in lead-free NBT-ST ceramics. J. Eur. Ceram. Soc., 2016, 36(3): 593-600.
|
[104] |
XU Q, LI T M, HAO H,et al. Enhanced energy storage properties of NaNbO3 modified Bi0.5Na0.5TiO3 based ceramics. J. Eur. Ceram. Soc., 2015, 35(2): 545-553.
|
[105] |
CAO W P, LI W L, ZHANG T D,et al. High-energy storage density and efficiency of (1-x)[0.94NBT-0.06BT]-xST lead-free ceramics. Energy Technol., 2015, 3(12): 1198-1204.
|
[106] |
TANG W L, XU Q, LIU H X,et al. High energy density dielectrics in lead-free Bi0.5Na0.5TiO3-NaNbO3-Ba(Zr0.2Ti0.8)O3 ternary system with wide operating temperature. J. Mater. Sci: Mater Electron, 2016, 27(6): 6526-6534.
|
[107] |
LUO L H, WANG B Y, JIANG X J,et al. Energy storage properties of (1-x)(Bi0.5Na0.5)TiO3-xKNbO3 lead-free ceramics. J. Mater. Sci., 2014, 49(4): 1659-1665.
|
[108] |
HAO J G, XU Z J, CHU R Q,et al. Enhanced energy-storage properties of (1-x)[(1-y),(Bi0.5K0.5)TiO3]-x(K0.Na0.5) NbO3 lead-free ceramics. Solid State Commun, 2015, 204: 19-22.
|
[109] |
WANG Y F, LV Z L, XIE H,et al. High energy-storage properties of [(Bi1/2Na1/2)0.94Ba0.06]La(1-x)ZrxTiO3 lead-free anti-ferroelectric ceramics. Ceram. Int., 2014, 40(3): 4323-4326.
|
[110] |
LI F, YANG K, LIU X,et al. Temperature induced high charge- discharge performances in lead-free Bi1/2Na1/2TiO3-based ergodic relaxor ferroelectric ceramics. Scripta Mater., 2017, 141: 15-19.
|
[111] |
LI F, ZHAI J W, SHEN B,et al. Influence of structural evolution on energy storage properties in Bi1/2Na1/2TiO3-SrTiO3-NaNbO3 lead-free ferroelectric ceramics. J. Appl. Phys., 2017, 121(5): 054103-054113.
|
[112] |
MALIC B, KORUZA J, HRESCAK J,et al. Sintering of lead-free piezoelectric sodium potassium niobate ceramics. Materials, 2015, 8(12): 8117-8146.
|