Journal of Inorganic Materials ›› 2018, Vol. 33 ›› Issue (7): 711-720.DOI: 10.15541/jim20170421
Special Issue: 陶瓷基复合材料
• Orginal Article • Previous Articles Next Articles
LIU Hai-Tao1, YANG Ling-Wei2, HAN Shuang1
Received:
2017-08-30
Revised:
2017-10-26
Published:
2018-07-10
Online:
2018-06-19
Supported by:
CLC Number:
LIU Hai-Tao, YANG Ling-Wei, HAN Shuang. Research Progress on Micro-mechanical Property of Continuous Fiber-reinforced Ceramic Matrix Composites[J]. Journal of Inorganic Materials, 2018, 33(7): 711-720.
Fig. 1 (a) Young's modulus of the AS fiber in ASf/SiO2 composites prepared at different temperatures as a function of penetration depth; SPM images of the nanoindentation imprints of ASf/SiO2 composites fabricated at 600℃ (b) and 1200℃ (c)[10]
Fig. 4 (a) Schematic representation of the micro-cantilever bending geometry; SEM images of a micro-cantilever prepared from SiC matrix in SiCf/SiC composites before (a) and after (b) testing[11,18]
Fig. 6 Morphologies of the micropillars on individual SiC matrix and SiC fiber (a, b); Micropillar morphologies of SiC fiber and SiC matrix after pillar splitting tests(c, d); Representive force-displacement curves of SiC matrix and SiC fiber by the micropillar splitting tests (e); Evolution of localized fracture toughness of the SiC matrix and SiC fiber as a function of composite fabrication temperature(f)[28]
Fig. 8 (a) Schematic drawing of fiber push-out measurement; (b) Typical load-displacement push-out test curve; SEM images of the frontside surface (c) and backside surface (d) of SiCf/SiC minicomposite after fiber push-out test using a flat punch indenter[43]
Composites | Interphase | τ/MPa | Flexural strength/MPa | Fracture mode | Ref. |
---|---|---|---|---|---|
PIP 3D Cf/SiC | None | 105 | 23 | Brittle | [19] |
PyC | 30 | 378 | Toughened | ||
PIP 3D Nextel440 ASf/SiC | None | 293 | 45 | Brittle | [34] |
PyC | 42 | 163 | Toughened | ||
Sol-Gel 3D SiCf/Mullite | None | 537 | 230 | Brittle | [46] |
PyC | 155 | 35 | Toughened | ||
PIP 3D SiCf/SiC | None | 450 | 90 | Brittle | [28] |
BN | 50 | 200 | Toughened | ||
Sol-Gel 3D ALF ASf/SiO2(600℃) | None | 50 | 105 | Toughened | [10] |
Sol-Gel 3D ALF ASf/SiO2(1200℃) | None | 260 | 45 | Brittle |
Table 1 Interfacial bonding strength of typical CFRCMCs investigated in our research group
Composites | Interphase | τ/MPa | Flexural strength/MPa | Fracture mode | Ref. |
---|---|---|---|---|---|
PIP 3D Cf/SiC | None | 105 | 23 | Brittle | [19] |
PyC | 30 | 378 | Toughened | ||
PIP 3D Nextel440 ASf/SiC | None | 293 | 45 | Brittle | [34] |
PyC | 42 | 163 | Toughened | ||
Sol-Gel 3D SiCf/Mullite | None | 537 | 230 | Brittle | [46] |
PyC | 155 | 35 | Toughened | ||
PIP 3D SiCf/SiC | None | 450 | 90 | Brittle | [28] |
BN | 50 | 200 | Toughened | ||
Sol-Gel 3D ALF ASf/SiO2(600℃) | None | 50 | 105 | Toughened | [10] |
Sol-Gel 3D ALF ASf/SiO2(1200℃) | None | 260 | 45 | Brittle |
Composites | Em/GPa | Ef/GPa | Γm/(J·m-2) | Γf/(J·m-2) | EBN interphase/GPa | ΓBN interphase/(J·m-2) |
---|---|---|---|---|---|---|
SiCf/SiC (800℃) | 118 | 160 | 49 | 29 | - | - |
SiCf/SiC (900℃) | 170 | 160 | 15 | 29 | - | - |
SiCf/SiC (1000℃) | 256 | 160 | 5 | 29 | - | - |
SiCf/BN/SiC | - | 160 | - | 29 | 70 | 4 |
Table 2 Micro-mechanical parameters of SiCf/SiC and SiCf/BN/SiC composites investigated in Liu’s group[28]
Composites | Em/GPa | Ef/GPa | Γm/(J·m-2) | Γf/(J·m-2) | EBN interphase/GPa | ΓBN interphase/(J·m-2) |
---|---|---|---|---|---|---|
SiCf/SiC (800℃) | 118 | 160 | 49 | 29 | - | - |
SiCf/SiC (900℃) | 170 | 160 | 15 | 29 | - | - |
SiCf/SiC (1000℃) | 256 | 160 | 5 | 29 | - | - |
SiCf/BN/SiC | - | 160 | - | 29 | 70 | 4 |
[1] | 陈朝辉, 李伟, 王松, 等. 先驱体转化陶瓷基复合材料, 北京: 科学出版社, 2012. |
[2] | 张立同. 纤维增韧碳化硅陶瓷复合材料—模拟、表征与设计.北京: 化学工业出版社, 2009. |
[3] | KRENKEL WALTER. Ceramic Matrix Composites.Weinheim: WILEY-VCH Verlag GmbH & Co.KGaA, 2008. |
[4] | WANG YI, LIU HAI-TAO, CHENG HAI-FENG.Research progress on oxide/oxide ceramic matrix composites.Journal of Inorganic Materials, 2014, 29(7): 673-680. |
[5] | MA QING-SONG, LIU HAI-TAO, PAN YU,et al.Research progress on the application of C/SiC composites in scramjet.Journal of Inorganic Materials, 2013, 28(3): 247-255. |
[6] | MEYER P, WAAS A M.FEM predictions of damage in continuous fiber ceramic matrix composites under transverse tension using the crack band method.Acta Materialia, 2016, 102: 292-303. |
[7] | Li L B, SONG Y D, SUN Y C.Modeling the tensile behavior of unidirectional C/SiC ceramic-matrix composites.Mechanics of Composite Materials, 2014, 49(6): 659-672. |
[8] | WANG L, WANG Z, DONG S M,et al.Finite element simulation of stress distribution and development of Cf/SiC ceramice-matrix composite coated with single layer SiC coating during thermal shock.Composites: Part B, 2013, 51: 204-214. |
[9] | EVANS A G, ZOK F W.The physics and mechanics of fibre-reinforced brittle matrix composites.Journal of Materials Science, 1994, 29: 3857-3896. |
[10] | YANG L W, WANG J Y, LIU H T,et al.Sol-Gel temperature dependent ductile-to-brittle transition of aluminosilicate fiber reinforced silica matrix composite.Composites: Part B, 2017, 119: 79-89. |
[11] | FRAZER D, ABAD M D, KRUMWIEDE D,et al.Localized mechanical property assessment of SiC/SiC composite materials.Composites: Part A, 2015, 70: 93-101. |
[12] | BLAESE D, GARCIA D E, GUGLIELMI P,et al.ZrO2 fiber- matrix interfaces in alumina fiber-reinforced model composites.Journal of European Ceramic Society, 2015, 35: 1593-1598. |
[13] | UDAYAKUMAR A, SRI GANESH A, RAJA S,et al.Effect of intermediate heat treatment on mechanical properties of SiCf/SiC composites with BN interphase prepared by ICVI.Journal of the European Ceramic Society, 2011, 31: 1145-1153. |
[14] | YAN W, PUN C L, WU Z,et al.Some issues on nanoindentation method to measure the elastic modulus of particles in composites.Composites: Part B, 2011, 42: 2093-2097. |
[15] | ZHANG L, REN C, ZHOU C,et al.Single fiber push-out characterization of interfacial mechanical properties in unidirectional CVI-C/SiC composites by the nano-indentation technique.Applied Surface Science, 2015, 357: 1427-1433. |
[16] | HINOKI T, ZHANG W, KOHYAMA A, ,et al. . Effect of fiber coating on interfacial shear strength of SiC/SiC by nano-indentation technique. Journal of Nuclear Materials, 1998, 258-263: 1567-1571. |
[17] | SEBASTIANI M, JOHANNS K E, HERBERT E G,et al.A novel pillar indentation splitting test for measuring fracture toughness of thin ceramic coatings.Philosophical Magazine, 2015, 95: 1928-1944. |
[18] | SEBASTIANI M, JOHANNS K E, HERBERT E G,et al.Measurement of fracture toughness by nanoindentation methods: recent advances and future challenges.Current Opinion in Solid State and Materials Science, 2015, 19: 324-333. |
[19] | LIU H T, YANG L W, SUN X,et al.Enhancing the fracture resistance of carbon fiber reinforced SiC matrix composites by interface modification through a simple fiber heat-treatment process.Carbon, 2016, 109: 435-443. |
[20] | LEATHERBARROW A, WU H Z.Mechanical behaviour of the constituents inside carbon-fibre/carbon-silicon carbide composites characterised by nano-indentation.Journal of the European Ceramic Society, 2012, 32: 579-588. |
[21] | MARX D T, RIESTER L.Mechanical properties of carbon-carbon composite components determined using nanoindentation.Carbon, 1999, 37: 1679-1684. |
[22] | DISS P, LAMON J, CARPENTIER L,et al.Sharp indentation behavior of carbon/carbon composites and varieties of carbon.Carbon, 2002, 40: 2567-2579. |
[23] | MULLER W M, MOOSBURGER-WILL J, SAUSE M G R,et al.Quantification of crack area in ceramic matrix composites at single- fiber push-out testing and influence of pyrocarbon fiber coating thickness on interfacial fracture toughness.Journal of the European Ceramic Society, 2015, 35: 2981-2989. |
[24] | OLIVER W C, PHARR G M.An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments.Journal of Materials Research, 1992, 7(6): 1564-1583. |
[25] | VANLANDINGHAM M R.Review of instrumented indentation.Journal of Research of the National Institute of Standards and Technology, 2003, 108(4): 249-265. |
[26] | OLIVER W C, PHARR G M.Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. Journal of Materials Research, 2004, 19(1): 3-20. |
[27] | FISCHER-CRIPPS A C. Critical review analysis and interpretation of nanoindentation test data.Surface& Coatings Technology, 2006, 200: 4153-4165. |
[28] | YANG L W, LIU H T, CHENG H F.Processing-temperature dependent micro- and macro-mechanical properties of SiC fiber reinforced SiC matrix composites.Composites: Part B, 2017, 129: 152-161. |
[29] | HONJO K.Fracture toughness of PAN-based carbon fibers estimated from strength-mirror size relation.Carbon, 2003, 41: 979-984. |
[30] | MORISHITA K, OCHIAI S, OKUDA H,et al.Fracture toughness of a crystalline silicon carbide fiber (tyranno-SA3®).Journal of the American Ceramic Society, 2006, 89(8): 2571-2576. |
[31] | OCHIAI S, KUBOSHIMA S, MORISHITA K,et al.Fracture toughness of Al2O3 fibers with an artificial notch introduced by a focused-ion-beam.Journal of the European Ceramic Society, 2010, 30: 1659-1667. |
[32] | CASELLAS D, CARO J, MOLAS S,et al.Fracture toughness of carbides in tool steels evaluated by nanoindentation.Acta Materialia, 2007, 55: 4277-4286. |
[33] | MUELLER M G, PEJCHAL V, ŽAGAR G,et al.Fracture toughness testing of nanocrystalline alumina and fused quartz using chevron-notched microbeams.Acta Materialia, 2015, 86: 385-395. |
[34] | LIU H T, YANG L W, HAN S,et al.Interface controlled micro- and macro-mechanical properties of aluminosilicate fiber reinforced SiC matrix composites.Journal of the European Ceramic Society, 2017, 37: 883-890. |
[35] | CAO S Y, WANG J, WANG H.High-temperature behavior and degradation mechanism of SiC fibers annealed in Ar and N2 atmospheres.Journal of Materials Science, 2016, 51: 4650-4659. |
[36] | DAVIES I J, ISHIKAWA T, SHIBUYA M,et al.Fibre and interfacial properties measured in situ for a 3D woven SiC/SiC-based composite with glass sealant.Composites: Part A, 1999, 30: 587-591. |
[37] | DAVIES I J, OGASAWARA T, ISHIKAWA T.Distribution of fibre pullout length and interface shear strength within a single fibre bundle for an orthogonal 3-D woven Si-Ti-C-O fibre/Si-Ti-C-O matrix composite tested at 1100℃ in air.Journal of the European Ceramic Society, 2005, 25: 599-604. |
[38] | BRANDSTETTER J, PETERLIK H, KROMP K,et al.A new fibre- bundle pull-out test to determine interface properties of a 2D- woven carbon/carbon composite.Composites Science Technology, 2003, 63: 653-660. |
[39] | BERTRAND S, FORIO P, PAILLER R,et al.Hi-Nicalon/SiC minicomposites with (pyrocarbon/SiC)n nanoscale multilayered interphases.Journal of the American Ceramic Society, 1999, 82(9): 2465-2473. |
[40] | SAUDER C, BRUSSON A, LAMON J.Influence of interface characteristics on the mechanical properties of Hi-Nicalon type-S or Tyranno-SA3 fiber-reinforced SiC/SiC minicomposites.International Journal of Applied Ceramic Technology, 2010, 7(3): 291-303. |
[41] | MORSCHER G N, MARTINEZ-FERNANDEZ J.Fiber effects on minicomposite mechanical properties for several silicon carbide fiber-chemically vapor-infiltrated silicon carbide matrix systems.Journal of the American Ceramic Society, 1999, 82(1): 145-155. |
[42] | REBILLAT F, LAMON J, GUETTE A.The concept of a strong interface applied to SiC/SiC composites with a BN interphase.Acta Materialia, 2000, 48: 4609-4618. |
[43] | BUET E, SAUDER C, SORNIN D,et al.Influence of surface fibre properties and textural organization of a pyrocarbon interphase on the interfacial shear stress of SiC/SiC minicomposites reinforced with Hi-Nicalon S and Tyranno SA3 fibres.Journal of the European Ceramic Society, 2014, 34: 179-188. |
[44] | MUELLER W M, MOOSBURGER-WILL J, SAUSE M G R,et al.Microscopic analysis of single-fiber push-out tests on ceramic matrix composites performed with Berkovich and flat-end indenter and evaluation of interfacial fracture toughness.Journal of the European Ceramic Society, 2013, 33: 441-451. |
[45] | RODRÍGUEZ M, MOLINA-ALDAREGUÍA J M, GONZÁLEZ C,et al.A methodology to measure the interface shear strength by means of the fiber push-in test.Composites Science and Technology, 2012, 72: 1924-1932. |
[46] | HAN S, YANG L W, LIU H T,et al.Micro-mechanical properties and interfacial engineering of SiC fiber reinforced Sol-Gel fabricated mullite matrix composites.Materials and Design, 2017, 131: 265-272. |
[47] | HE M Y, HUTCHINSON J W.Crack deflection at the interface between dissimilar materials.International Journal of Solids and Structures, 1989, 25(9): 1053-1067. |
[48] | HE M Y, EVANS A G, HUTCHINSON J W.Crack deflection at an interface between dissimilar elastic materials: role of residual stresses.International Journal of Solids and Structures, 1994, 31(24): 3443-3455. |
[49] | FUJITA H, JEFFERSON G, MCMEEKING R M,et al.Mullite/alumina mixtures for use as porous matrices in oxide fiber composites.Journal of the American Ceramic Society, 2004, 87(2): 261-267. |
[1] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
[2] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[3] | CHEN Qiang, BAI Shuxin, YE Yicong. Highly Thermal Conductive Silicon Carbide Ceramics Matrix Composites for Thermal Management: a Review [J]. Journal of Inorganic Materials, 2023, 38(6): 634-646. |
[4] | LIN Junliang, WANG Zhanjie. Research Progress on Ferroelectric Superlattices [J]. Journal of Inorganic Materials, 2023, 38(6): 606-618. |
[5] | NIU Jiaxue, SUN Si, LIU Pengfei, ZHANG Xiaodong, MU Xiaoyu. Copper-based Nanozymes: Properties and Applications in Biomedicine [J]. Journal of Inorganic Materials, 2023, 38(5): 489-502. |
[6] | YUAN Jingkun, XIONG Shufeng, CHEN Zhangwei. Research Trends and Challenges of Additive Manufacturing of Polymer-derived Ceramics [J]. Journal of Inorganic Materials, 2023, 38(5): 477-488. |
[7] | DU Jianyu, GE Chen. Recent Progress in Optoelectronic Artificial Synapse Devices [J]. Journal of Inorganic Materials, 2023, 38(4): 378-386. |
[8] | YANG Yang, CUI Hangyuan, ZHU Ying, WAN Changjin, WAN Qing. Research Progress of Flexible Neuromorphic Transistors [J]. Journal of Inorganic Materials, 2023, 38(4): 367-377. |
[9] | YOU Junqi, LI Ce, YANG Dongliang, SUN Linfeng. Double Dielectric Layer Metal-oxide Memristor: Design and Applications [J]. Journal of Inorganic Materials, 2023, 38(4): 387-398. |
[10] | CHEN Kunfeng, HU Qianyu, LIU Feng, XUE Dongfeng. Multi-scale Crystallization Materials: Advances in in-situ Characterization Techniques and Computational Simulations [J]. Journal of Inorganic Materials, 2023, 38(3): 256-269. |
[11] | ZHANG Chaoyi, TANG Huili, LI Xianke, WANG Qingguo, LUO Ping, WU Feng, ZHANG Chenbo, XUE Yanyan, XU Jun, HAN Jianfeng, LU Zhanwen. Research Progress of ScAlMgO4 Crystal: a Novel GaN and ZnO Substrate [J]. Journal of Inorganic Materials, 2023, 38(3): 228-242. |
[12] | QI Zhanguo, LIU Lei, WANG Shouzhi, WANG Guogong, YU Jiaoxian, WANG Zhongxin, DUAN Xiulan, XU Xiangang, ZHANG Lei. Progress in GaN Single Crystals: HVPE Growth and Doping [J]. Journal of Inorganic Materials, 2023, 38(3): 243-255. |
[13] | LIN Siqi, LI Airan, FU Chenguang, LI Rongbing, JIN Min. Crystal Growth and Thermoelectric Properties of Zintl Phase Mg3X2 (X=Sb, Bi) Based Materials: a Review [J]. Journal of Inorganic Materials, 2023, 38(3): 270-279. |
[14] | LIU Yan, ZHANG Keying, LI Tianyu, ZHOU Bo, LIU Xuejian, HUANG Zhengren. Electric-field Assisted Joining Technology for the Ceramics Materials: Current Status and Development Trend [J]. Journal of Inorganic Materials, 2023, 38(2): 113-124. |
[15] | XIE Bing, CAI Jinxia, WANG Tongtong, LIU Zhiyong, JIANG Shenglin, ZHANG Haibo. Research Progress of Polymer-based Multilayer Composite Dielectrics with High Energy Storage Density [J]. Journal of Inorganic Materials, 2023, 38(2): 137-147. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||