Journal of Inorganic Materials ›› 2018, Vol. 33 ›› Issue (7): 699-710.DOI: 10.15541/jim20170523
Special Issue: 离子电池材料
• Orginal Article • Next Articles
MA Guo-Qiang1,2, JIANG Zhi-Min2, CHEN Hui-Chuang2, WANG Li1, DONG Jing-Bo2, ZHANG Jian-Jun2, XU Wei-Guo2, HE Xiang-Ming1
Received:
2017-11-06
Revised:
2018-01-16
Published:
2018-07-10
Online:
2018-06-19
About author:
MA Guo-Qiang. E-mail: maguoqiang@sinochem.com
CLC Number:
MA Guo-Qiang, JIANG Zhi-Min, CHEN Hui-Chuang, WANG Li, DONG Jing-Bo, ZHANG Jian-Jun, XU Wei-Guo, HE Xiang-Ming. Research Process on Novel Electrolyte of Lithium-ion Battery Based on Lithium Salts[J]. Journal of Inorganic Materials, 2018, 33(7): 699-710.
Lithium salt | Ionic conductivity (Solvent)/(mS∙cm-1) | Oxidation potential(Solvent and working electrode)/V (vs. Li/Li+) | Al- corrosion | Melting point/℃ | Initial decomposition temperature/℃ |
---|---|---|---|---|---|
LiPF6 | 10.8 (EC : DMC=1 : 1b) [ | >5.1 (EC : DMC=1 : 1b, Lil-xMn2O4) [ | N | 200[ | 125[ |
LiClO4 | 10.1 (EC : DMC=1 : 1a) [ | >5.1 (EC : DMC=1 : 1b, Lil-xMn2O4) [ | N | 236[ | 450[ |
LiBF4 | 4.9 (EC : DMC=1 : 1b) [ | >5.1 (EC : DMC=1 : 1b, Lil-xMn2O4) [ | N | 293-300[ | 175[ |
LiTFSI | 9 (EC : DMC=1 : 1b) [ | 4.35 (EC : DMC=1 : 1b, Lil-xMn2O4) [ | Y | 234[ | 360[ |
LiFSI | 9.73 (EC : EMC=3 : 7a) [ | 5.6 (EC : DMC=1 : 1a, Pt) [ | Y | 135[ | 200[ |
LiBOB | 14.9 (DME) [ | 4.6 (PC : EC : DEC=1 : 1 : 1a, Pt) [ | N | >300[ | 275[ |
LiDFOB | 8.58 (EC : DMC=1 : 1a) [ | >6 (PC : EC : EMC=1 : 1 : 3a, Al) [ | N | 265-271[ | 200[ |
LiTDI | 6.7 (EC : DMC=1 : 1b) [ | >4.5 (EC: DMC1 : 1b, Pt) [ | N | - | 285[ |
Table 1 Properties of some lithium salts
Lithium salt | Ionic conductivity (Solvent)/(mS∙cm-1) | Oxidation potential(Solvent and working electrode)/V (vs. Li/Li+) | Al- corrosion | Melting point/℃ | Initial decomposition temperature/℃ |
---|---|---|---|---|---|
LiPF6 | 10.8 (EC : DMC=1 : 1b) [ | >5.1 (EC : DMC=1 : 1b, Lil-xMn2O4) [ | N | 200[ | 125[ |
LiClO4 | 10.1 (EC : DMC=1 : 1a) [ | >5.1 (EC : DMC=1 : 1b, Lil-xMn2O4) [ | N | 236[ | 450[ |
LiBF4 | 4.9 (EC : DMC=1 : 1b) [ | >5.1 (EC : DMC=1 : 1b, Lil-xMn2O4) [ | N | 293-300[ | 175[ |
LiTFSI | 9 (EC : DMC=1 : 1b) [ | 4.35 (EC : DMC=1 : 1b, Lil-xMn2O4) [ | Y | 234[ | 360[ |
LiFSI | 9.73 (EC : EMC=3 : 7a) [ | 5.6 (EC : DMC=1 : 1a, Pt) [ | Y | 135[ | 200[ |
LiBOB | 14.9 (DME) [ | 4.6 (PC : EC : DEC=1 : 1 : 1a, Pt) [ | N | >300[ | 275[ |
LiDFOB | 8.58 (EC : DMC=1 : 1a) [ | >6 (PC : EC : EMC=1 : 1 : 3a, Al) [ | N | 265-271[ | 200[ |
LiTDI | 6.7 (EC : DMC=1 : 1b) [ | >4.5 (EC: DMC1 : 1b, Pt) [ | N | - | 285[ |
Fig. 2 Schematic description of a solvated lithium ion’s journey from solution bulk to grapheneinterior, and the impedance components associated with these steps[43](a) Conventional model; (b) Improved model
Fig. 9 (a) Representative Li+ cation solvate species (SSIPs, CIPs and AGGs) in dilute and concentrated electrolytes. Schematic illustration of the electrolyte reduction mechanism at the electrode/electrolyte interface in (b) dilute and (c) concentrated electrolytes[78]
Fig. 10 Supercells used and projected density of states (PDOS) obtained in quantum mechanical DFT-MD simulations on non-aqueous (a) dilute (0.4 mol/L) and (b) superconcentrated (4.2 mol/L) LiTFSA/AN solutions[78]
[1] | 闫春生, 李媛媛, 刘园园. 锂离子电池电解质锂盐的发展历程和新型锂盐的研究进展. 河南化工, 2016, 33(4): 14-17. |
[2] | YAMADA Y, YAMADA A.Review-superconcentrated electrolytes for lithium batteries.Journal of The Electrochemical Society, 2015, 162(14): A2406-A2423. |
[3] | 吴宇平. 锂离子电池: 应用与实践, 2版. 北京: 化学工业出版社, 2012. |
[4] | 李永坤, 张若昕, 刘建生. 锂离子电池电解液稳定添加剂研究进展. 电池工业, 2008, 13(5): 353-356. |
[5] | 刘旭, 杨续来. 锂离子电池电解质锂盐的研究进展. 电源技术, 2016, 40(1): 218-220. |
[6] | YANG H, ZHUANG G V, JR P N R. Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6.Journal of Power Sources, 2006, 161(1): 573-579. |
[7] | RAVDEL B, ABRAHAM K M, GITZENDANNER R, ,et al.. Thermal stability of lithium-ion battery electrolytes. Journal of Power Sources, 2003, s119-121: 805-810. |
[8] | KAWAMURA T, OKADA S, YAMAKI J I.Decomposition reaction of LiPF6-based electrolytes for lithium ion cells.Journal of Power Sources, 2006, 156(2): 547-554. |
[9] | PLAKHOTNYK A V, ERNST L, SCHMUTZLER R.Hydrolysis in the system LiPF6-propylene carbonate-dimethyl carbonate-H2O.Journal of Fluorine Chemistry, 2005, 126(1): 27-31. |
[10] | PARK C K, ZHANG Z, XU Z,et al. Variables study for the fast charging lithium ion batteries.Journal of Power Sources, 2007, 165(2): 892-896. |
[11] | LUX S F, LUCAS I T, POLLAK E,et al. The mechanism of HF formation in LiPF6 based organic carbonate electrolytes.Electrochemistry Communications, 2012, 14(1): 47-50. |
[12] | 庄全超, 徐守冬, 邱祥云, 等. 锂离子电池的电化学阻抗谱分析. 化学进展, 2010, 22(6): 1044-1057. |
[13] | 宋印涛, 李连仲, 丁静, 等. 锂离子电池电解质盐的研究进展. 浙江化工, 2010, 41(8): 24-26. |
[14] | ARAVINDAN V, GNANARAJ J, MADHAVI S,et al.Lithium-ion conducting electrolyte salts for lithium batteries.Chemistry, 2011, 17(51): 14326-14346. |
[15] | KAWAMURA T, KIMURA A, EGASHIRA M,et al.Thermal stability of alkyl carbonate mixed-solvent electrolytes for lithium ion cells.Journal of Power Sources, 2002, 104(2): 260-264. |
[16] | XU K.Nonaqueous liquid electrolytes for lithium-based rechargeable batteries.Chemical Reviews, 2004, 104(10): 4303-4418. |
[17] | ZHANG S S, XU K, JOW T R.A new approach toward improved low temperature performance of Li-ion battery.Electrochemistry Communications, 2002, 4(11): 928-932. |
[18] | ZHANG Z A, ZHAO X X, PENG B,et al.Mixed salts for lithium iron phosphate-based batteries operated at wide temperature range.Transactions of Nonferrous Metals Society of China, 2015, 25(7): 2260-2265. |
[19] | KOMABA S, ISHIKAWA T, YABUUCHI N,et al.Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries.ACS Applied Materials & Interfaces, 2011, 3(11): 4165-4168. |
[20] | LI Y, LIAN F, MA L,et al.Fluoroethylene carbonate as electrolyte additive for improving the electrochemical performances of high- capacity Li1.16[Mn0.75Ni0.25]0.84O2 material.Electrochimica Acta, 2015, 168: 261-270. |
[21] | ZHANG S S, XU K, JOW T R.Enhanced performance of Li-ion cell with LiBF4-PC based electrolyte by addition of small amount of LiBOB.Journal of Power Sources, 2006, 156(2): 629-633. |
[22] | 蒲薇华, 何向明, 王莉, 等. 锂离子电池LiBOB电解质盐研究. 化学进展, 2006, 18(12): 1703-1709. |
[23] | XU K, ZHANG S S, LEE U,et al.LiBOB: is it an alternative salt for lithium ion chemistry? Journal of Power Sources, 2005, 146(1): 79-85. |
[24] | ZHANG S S.Electrochemical study of the formation of a solid electrolyte interface on graphite in a LiBC2O4F2-based electrolyte.Journal of Power Sources, 2007, 163(2): 713-718. |
[25] | ZHANG S S.An unique lithium salt for the improved electrolyte of Li-ion battery.Electrochemistry Communications, 2006, 8(9): 1423-1428. |
[26] | 邓凌峰, 陈洪. 锂电池用草酸二氟硼酸锂有机电解液的电化学性能. 无机化学学报, 2009, 25(9): 1646-1650. |
[27] | KANAMURA K, UMEGAKI T, SHIRAISHI S,et al.Electrochemical behavior of Al current collector of rechargeable lithium batteries in propylene carbonate with LiCF3SO3, Li(CF3SO2)2N, or Li(C4F9SO2)(CF3SO2)N.Journal of the Electrochemical Society, 2002, 149(2): A185-A194. |
[28] | 胡锋波, 张庆华, 詹晓力, 等. 双(氟代磺酰)亚胺及其盐的制备、性能与应用进展. 化工进展, 2011, 30(10): 2097-2105. |
[29] | YANG G, SHI J, SHEN C,et al. Improving the cyclability performance of lithium-ion batteries by introducing lithium difluorophosphate (LiPO2F2) additive.RSC Advances, 2017, 7(42): 26052-26059. |
[30] | NIEDZICKI L, GRUGEON S, LARUELLE S,et al.New covalent salts of the 4+ V class for Li batteries.Journal of Power Sources, 2011, 196(20): 8696-8700. |
[31] | PAILLET S, SCHMIDT G, LADOUCEUR S,et al.Power capability of LiTDI-based electrolytes for lithium-ion batteries.Journal of Power Sources, 2015, 294: 507-515. |
[32] | YOUNESI R, VEITH G M, JOHANSSON P,et al.Lithium salts for advanced lithium batteries: Li-metal, Li-O2, and Li-S.Energy & Environmental Science, 2015, 8(7): 1905-1922. |
[33] | HAN H B, ZHOU S S, ZHANG D J,et al.Lithium bis(fluorosulfonyl) imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: physicochemical and electrochemical properties.Journal of Power Sources, 2011, 196(7): 3623-3632. |
[34] | TAN S, JI Y J, ZHANG Z R,et al.Recent progress in research on high-voltage electrolytes for lithium-ion batteries.ChemPhysChem, 2014, 15(10): 1956-1969. |
[35] | ABOUIMRANE A, DING J, DAVIDSON I J.Liquid electrolyte based on lithium bisfluorosulfonyl imide salt: aluminum corrosion studies and lithium ion battery investigations.Journal of Power Sources, 2009, 189(1): 693-696. |
[36] | 谭晓兰, 程新群, 马玉林, 等. LiBOB基电解液成膜性及其循环性能. 物理化学学报, 2009, 25(10): 1967-1971. |
[37] | 秦利平, 郭为民. 新型锂盐二氟草酸硼酸锂的研究进展. 电源技术, 2014, 38(6): 1159-1161. |
[38] | Sigma-Aldrich, . |
[39] | HU Y, LI H, HUANG X,et al.Novel room temperature molten salt electrolyte based on LiTFSI and acetamide for lithium batteries.Electrochemistry Communications, 2004, 6(1): 28-32. |
[40] | YANG L, ZHANG H, DRISCOLL P,et al.Six-membered-ring malonatoborate-based lithium salts as electrolytes for lithium ion batteries.ECS Transactions, 2011, 33(39): 57-69. |
[41] | 戴立新. 高氯酸锂有机电解液的制备研究. 新疆有色金属, 2007, 30(A01):98-99. |
[42] | SEO D M, BORODIN O, HAN S D,et al.Electrolyte solvation and ionic association.Journal of the Electrochemical Society, 2012, 161(14): A2042-A2053. |
[43] | XU KANG.“Charge-transfer” process at graphite/electrolyte interface and the solvation sheath structure of Li+ in nonaqueous electrolytes.Journal of the Electrochemical Society, 2007, 154(3): A162-A167. |
[44] | CHEN X, XU W, ENGELHARD M,et al.Mixed salts of LiTFSI and LiBOB for stable LiFePO4-based batteries at elevated temperatures.Journal of Materials Chemistry A, 2014, 2(7): 2346-2352. |
[45] | 王青磊, 李法强, 贾国凤, 等. 混合锂盐LiTFSI-LiODFB基电解液的高温性能. 电池, 2016, 46(4): 1001-1579. |
[46] | AMINE K, LIU J, BELHAROUAK I.High-temperature storage and cycling of C-LiFePO4/graphite Li-ion cells.Electrochemistry Communications, 2005, 7(7): 669-673. |
[47] | SONG H, CAO Z, CHEN X,et al.Capacity fade of LiFePO4/ graphite cell at elevated temperature.Journal of Solid State Electrochemistry, 2013, 17(3): 599-605. |
[48] | 宋海申, 赖延清, 李劼, 等. LiPF6/LiBOB混合锂盐改善LiFePO4/石墨动力电池高温循环性能研究. 功能材料, 2013, 44(19): 2849-2853. |
[49] | KIM K E, JANG J Y, PARK I,et al.A combination of lithium difluorophosphate and vinylene carbonate as reducible additives to improve cycling performance of graphite electrodes at high rates.Electrochemistry Communications, 2015, 61: 121-124. |
[50] | LU Y, TU Z, ARCHER L A.Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nature Materials, 2014, 13(10): 961-969. |
[51] | LIN D, LIU Y, LIANG Z,et al.Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes.Nature Nanotechnology, 2016, 11(7): 626. |
[52] | BHATT A I, KAO P, BEST A S,et al.Understanding the morphological changes of lithium surfaces during cycling in electrolyte solutions of lithium salts in an ionic liquid.Journal of the Electrochemical Society, 2013, 160(8): A1171-A1180. |
[53] | XU K.Electrolytes and interphases in Li-ion batteries and beyond.Chemical Reviews, 2014, 114(23): 11503-11618. |
[54] | JEONG J, LEE J N, PARK J K,et al.Stabilizing effect of 2-(triphenylphosphoranylidene)succinic anhydride as electrolyte additive on the lithium metal of lithium metal secondary batteries.Electrochimica Acta, 2015, 170: 353-359. |
[55] | MIAO R, YANG J, FENG X,et al. Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility.Journal of Power Sources, 2014, 271: 291-297. |
[56] | XIANG H, SHI P, BHATTACHARYA P,et al.Enhanced charging capability of lithium metal batteries based on lithium bis (trifluoromethanesulfonyl)imide-lithium bis(oxalato)borate dual-salt electrolytes.Journal of Power Sources, 2016, 318: 170-177. |
[57] | MCKINNON W R, DAHN J R.How to reduce the cointercalation of propylene carbonate in LixZrS2 and other layered compounds.Journal of the Electrochemical Society, 1985, 132(2): 364-366. |
[58] | JEONG S K, INABA M, IRIYAMA Y,et al. Electrochemical intercalation of lithium ion within graphite from propylene carbonate solutions.Electrochemical and Solid-State Letters, 2003, 6(1): A13-A15. |
[59] | JEONG S K, SEO H Y, KIM D H,et al.Suppression of dendritic lithium formation by using concentrated electrolyte solutions.Electrochemistry Communications, 2008, 10(4): 635-638. |
[60] | SUO L, HU Y S, LI H,et al.A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries.Nature Communications, 2013, 4(2): 1481. |
[61] | QIAN J, HENDERSON W A, XU W,et al.High rate and stable cycling of lithium metal anode.Nature Communications, 2015, 6: 6362. |
[62] | MATSUMOTO K, INOUE K, NAKAHARA K,et al. Suppression of aluminum corrosion by using high concentration LiTFSI electrolyte.Journal of Power Sources, 2013, 231(2): 234-238. |
[63] | LIANG H, LI H, WANG Z,et al.New binary room-temperature molten salt electrolyte based on urea and LiTFSI.The Journal of Physical Chemistry B, 2001, 105(41): 9966-9969. |
[64] | PAPPENFUS T M, HENDERSON W A, OWENS B B,et al.Complexes of lithium imide salts with tetraglyme and their polyelectrolyte composite materials.Journal of the Electrochemical Society, 2004, 151(2): A209-A215. |
[65] | TAMURA T, HACHIDA T, YOSHIDA K,et al.New glyme-cyclic imide lithium salt complexes as thermally stable electrolytes for lithium batteries.Journal of Power Sources, 2010, 195(18): 6095-6100. |
[66] | TERADA S, MANDAI T, NOZAWA R,et al.Physicochemical properties of pentaglyme-sodium bis(trifluoromethanesulfonyl) amide solvate ionic liquid.Physical Chemistry Chemical Physics, 2014, 16(23): 11737-11746. |
[67] | MANDAI T, YOSHIDA K, TSUZUKI S,et al.Effect of ionic size on solvate stability of glyme-based solvate ionic liquids.Journal of Physical Chemistry B, 2015, 119(4): 1523-1534. |
[68] | YAMADA Y, YAEGASHI M, ABE T,et al.A superconcentrated ether electrolyte for fast-charging Li-ion batteries.Chemical Communications, 2013, 49(95): 11194-11196. |
[69] | HENDERSON W A, MCKENNA F, KHAN M A,et al.Glyme- lithium bis(trifluoromethanesulfonyl)imide and glyme-lithium bis (perfluoroethanesulfonyl)imide phase behavior and solvate structures.Chemistry of Materials, 2005, 17(9): 2284-2289. |
[70] | MCOWEN D W, SEO D M, BORODIN O,et al. Concentrated electrolytes: decrypting electrolyte properties and reassessing Al corrosion mechanisms.Energy & Environmental Science, 2013, 7(1): 416-426. |
[71] | AN S J, LI J, DANIEL C,et al.ChemInform abstract: the state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling.Cheminform, 2016, 105(28): 52-76. |
[72] | NIE M, ABRAHAM D P, SEO D M,et al. Role of solution structure in solid electrolyte interphase formation on graphite with LiPF6 in propylene carbonate.The Journal of Physical Chemistry C, 2013, 117(48): 25381-25389. |
[73] | MATSUMOTO K, INOUE K, NAKAHARA K,et al.Suppression of aluminum corrosion by using high concentration LiTFSI electrolyte.Journal of Power Sources, 2013, 231(2): 234-238. |
[74] | MCOWEN D W, SEO D M, BORODIN O,et al.Concentrated electrolytes: decrypting electrolyte properties and reassessing Al corrosion mechanisms.Energy & Environmental Science, 2014, 7(1): 416-426. |
[75] | YOON H, HOWLETT P C, BEST A S,et al.Fast charge/discharge of Li metal batteries using an ionic liquid electrolyte.Journal of the Electrochemical Society, 2013, 160(10): A1629-A1637. |
[76] | SUO L, BORODIN O, GAO T,et al.“Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries.Science, 2015, 350(6263): 938-943. |
[77] | SUO L, BORODIN O, SUN W,et al.Advanced high-voltage aqueous lithium-ion battery enabled by “water-in-salt” electrolyte.Angewandte Chemie International Edition, 2016, 55(25): 7136-7141. |
[78] | ZHENG J, LOCHALA J A, KWOK A,et al.Research progress towards understanding the unique interfaces between concentrated electrolytes and electrodes for energy storage applications.Advanced Science, 2017, 4: 1700032. |
[79] | DOI T, SHIMIZU Y, HASHINOKUCHI M,et al.Dilution of highly concentrated LiBF4/propylene carbonate electrolyte solution with fluoroalkyl ethers for 5-V LiNi0.5Mn1.5O4positive electrodes.Journal of the Electrochemical Society, 2017, 164(1): A6412-A6416. |
[80] | HUANG F, MA G, WEN Z,et al.Enhancing metallic lithium batteries performance by tuning electrolyte solution structure.Journal of Materials Chemistry A, 2017, DOI: 10.1039/C7TA08274F. |
[1] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
[2] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[3] | CHEN Qiang, BAI Shuxin, YE Yicong. Highly Thermal Conductive Silicon Carbide Ceramics Matrix Composites for Thermal Management: a Review [J]. Journal of Inorganic Materials, 2023, 38(6): 634-646. |
[4] | LIN Junliang, WANG Zhanjie. Research Progress on Ferroelectric Superlattices [J]. Journal of Inorganic Materials, 2023, 38(6): 606-618. |
[5] | NIU Jiaxue, SUN Si, LIU Pengfei, ZHANG Xiaodong, MU Xiaoyu. Copper-based Nanozymes: Properties and Applications in Biomedicine [J]. Journal of Inorganic Materials, 2023, 38(5): 489-502. |
[6] | YUAN Jingkun, XIONG Shufeng, CHEN Zhangwei. Research Trends and Challenges of Additive Manufacturing of Polymer-derived Ceramics [J]. Journal of Inorganic Materials, 2023, 38(5): 477-488. |
[7] | FANG Renrui, REN Kuan, GUO Zeyu, XU Han, ZHANG Woyu, WANG Fei, ZHANG Peiwen, LI Yue, SHANG Dashan. Associative Learning with Oxide-based Electrolyte-gated Transistor Synapses [J]. Journal of Inorganic Materials, 2023, 38(4): 399-405. |
[8] | CHEN Xinli, LI Yan, WANG Weisheng, SHI Zhiwen, ZHU Liqiang. Gelatin/Carboxylated Chitosan Gated Oxide Neuromorphic Transistor [J]. Journal of Inorganic Materials, 2023, 38(4): 421-428. |
[9] | QIU Haiyang, MIAO Guangtan, LI Hui, LUAN Qi, LIU Guoxia, SHAN Fukai. Effect of Plasma Treatment on the Long-term Plasticity of Synaptic Transistor [J]. Journal of Inorganic Materials, 2023, 38(4): 406-412. |
[10] | DU Jianyu, GE Chen. Recent Progress in Optoelectronic Artificial Synapse Devices [J]. Journal of Inorganic Materials, 2023, 38(4): 378-386. |
[11] | YANG Yang, CUI Hangyuan, ZHU Ying, WAN Changjin, WAN Qing. Research Progress of Flexible Neuromorphic Transistors [J]. Journal of Inorganic Materials, 2023, 38(4): 367-377. |
[12] | YOU Junqi, LI Ce, YANG Dongliang, SUN Linfeng. Double Dielectric Layer Metal-oxide Memristor: Design and Applications [J]. Journal of Inorganic Materials, 2023, 38(4): 387-398. |
[13] | QI Zhanguo, LIU Lei, WANG Shouzhi, WANG Guogong, YU Jiaoxian, WANG Zhongxin, DUAN Xiulan, XU Xiangang, ZHANG Lei. Progress in GaN Single Crystals: HVPE Growth and Doping [J]. Journal of Inorganic Materials, 2023, 38(3): 243-255. |
[14] | ZHANG Chaoyi, TANG Huili, LI Xianke, WANG Qingguo, LUO Ping, WU Feng, ZHANG Chenbo, XUE Yanyan, XU Jun, HAN Jianfeng, LU Zhanwen. Research Progress of ScAlMgO4 Crystal: a Novel GaN and ZnO Substrate [J]. Journal of Inorganic Materials, 2023, 38(3): 228-242. |
[15] | CHEN Kunfeng, HU Qianyu, LIU Feng, XUE Dongfeng. Multi-scale Crystallization Materials: Advances in in-situ Characterization Techniques and Computational Simulations [J]. Journal of Inorganic Materials, 2023, 38(3): 256-269. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||