Journal of Inorganic Materials ›› 2018, Vol. 33 ›› Issue (3): 301-306.DOI: 10.15541/jim20170095
Special Issue: 离子电池材料
• Orginal Article • Previous Articles Next Articles
CAI Jian-Xin1, LI Zhi-Peng1, LI Wei1, ZHAO Peng-Fei1, YANG Zhen-Yu2, YU Ji2
Received:
2017-02-27
Revised:
2017-05-18
Published:
2018-03-20
Online:
2018-03-12
Supported by:
CLC Number:
CAI Jian-Xin, LI Zhi-Peng, LI Wei, ZHAO Peng-Fei, YANG Zhen-Yu, YU Ji. Synthesis and Electrochemical Performance of Fe2O3 Nanofibers as Anode Materials for LIBs[J]. Journal of Inorganic Materials, 2018, 33(3): 301-306.
Fig. 1 (a) FT-IR spectra of PVP/FeCl3(II) nanofibers and the products calcined from PVP/FeCl3(II) nanofibers at 300-700℃ and (b) XRD patterns of the products calcined from PVP/FeCl3(II) nanofibers and Fe2O3 nanoparticles at 300-700℃
[1] | ARICO A S, BRUCE P, SCROSATI B, et al.Nanostructured materials for advanced energy conversion and storage devices. Nature Materials, 2005, 4(5): 366-377. |
[2] | CHOCKLA A M, HARRIS J T, AKHAVAN V A, et al.Silicon nanowire fabric as a lithium ion battery electrode material. Journal of the American Chemical Society, 2011, 133(51):, 20914-20921. |
[3] | TARASCON J M, ARMAND M.Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414: 359-367. |
[4] | LI HUIQIAO, ZHOU HAOSHEN.Enhancing the performances of Li-ion batteries by carbon-coating: present and future. Chemical Communications, 2012, 48(9): 1201-1217. |
[5] | LIU GAO, XUN SHIDI, SONG XIANGYUN, et al.Polymers with tailored electronic structure for high capacity lithium battery electrodes. Advanced Materials, 2011, 23(40): 4679-4683. |
[6] | TERRANOVA M L, ORLANDUCCI S, TAMBURRI E, et al.Si/C hybrid nanostructures for Li-ion anodes: an overview. Journal of Power Sources, 2014, 246: 167-177. |
[7] | JI LIWEN, TOPRAKCI OZAN, ALCOUTLABI MATAZ, et al.α-Fe2O3 nanoparticle-loaded carbon nanofibers as stable and high-capacity anodes for rechargeable lithium-ion batteries. ACS Applied Materials & Interfaces, 2012, 4(5): 2672-2679. |
[8] | CHEN J, XU L, LI W, et al.α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Advanced Materials, 2005, 17(5): 582-586. |
[9] | LEI DANNI, ZHANG MING, QU BAIHUA, et al.α-Fe2O3 nanowall arrays: hydrothermal preparation, growth mechanism and excellent rate performances for lithium ion batteries. Nanoscale, 2012, 4(11): 3422-3426. |
[10] | LI JIAXIN, ZHAO YI, DING YUNHAI, et al.Fe2O3 nanoparticles coated on ferrocene-encapsulated single-walled carbon nanotubes as stable anode materials for long-term cycling. RSC Advance, 2012, 2(10): 4205-4208. |
[11] | LIU ZHAOLIN, SIOK WEI TAY.Direct growth Fe2O3 nanorods on carbon fibers as anode materials for lithium ion batteries. Materials Letters, 2012, 72: 74-77. |
[12] | LIU JING, HE FANG, CHEN LIXIA, et al.Novel hexagonal- YFeO3/α-Fe2O3 heterojunction composite nanowires with enhanced visible light photocatalytic activity. Materials Letters, 2016, 165: 263-266. |
[13] | QIAO HUI, LUO LEI, CHEN KE, et al.Electrospun synthesis and lithium storage properties of magnesium ferrite nanofibers. Electrochimica Acta, 2015, 160: 43-49. |
[14] | GAO Q, TAKIZAWA J, KIMURA M, et al.Hydrophilic non-wovens made of cross-linked fully-hydrolyzed poly(vinyl alcohol) electrospun nanofibers. Polymer, 2013, 54(1): 120-126. |
[15] | GAO QIANG, MEGURO HIKARU, OKAMOTO SHUJI, et al.Flexible tactile sensor using the reversible deformation of poly (3-hexylthiophene) nanofiber assemblies. Langmuir, 2012, 28(51): 17593-17596. |
[16] | GAO CHUNXIA, RAHAMAN MN, GAO QIANG, et al.Robotic deposition and in vitro characterization of 3D gelatin-bioactive glass hybrid scaffolds for biomedical applications. Journal of Biomedical Materials Research Part A, 2013, 101(7): 2027-2037. |
[17] | ZHOU JIAN, GAO QIANG, FUKAWA T, et al.Macroporous conductive polymer films fabricated by electrospun nanofiber templates and their electromechanical properties. Nanotechnology, 2011, 22(27): 275501. |
[18] | CAI JIANXIN, ZHAO PENGFEI, LI ZHIPENG, et al.A corn-inspired structure design for an iron oxide fiber/reduced graphene oxide composite as a high performance anode material for Li-ion batteries. RSC Advance, 2017, 7: 44874-44883. |
[19] | ZHU YING, ZHANG JINGCHANG, ZHAI JIN, et al.Preparation of superhydrophilic α-Fe2O3 nanofibers with tunable magnetic properties. Thin solid films, 2006, 510: 271-274. |
[20] | KIM HAE-RIM, KIM BYOUNG-SUHK, KIM ICK-SOO.Fabrication and EMI shielding effectiveness of Ag-decorated highly porous poly(vinylalcohol)/Fe2O3 nanofibrous composites. Materials Chemistry and Physics, 2012, 135: 1024-1029. |
[21] | ZHAN SIHUI, CHEN DAIRONG, JIAO XIULING, et al.Facile fabrication of long α-Fe2O3, α-Fe and γ-Fe2O3 hollow fibers using Sol-Gel combined co-electrospinning technology .[J]. Colloid Interfaces Sci., 2007, 308: 265-270. |
[22] | PARK CHAN-HEE, KANG SEUNG-JI, LEONARD D TIJING, et al.Inductive heating of electrospun Fe2O3/polyurethane composite mat under high-frequency magnetic field. Ceramics International, 2013, 39: 9785-9790. |
[23] | CHENG S, SHEN D, ZHU X, et al.Preparation of nonwoven polyimide/silica hybrid nanofiberous fabrics by combining electrospinning and controlled in situ Sol-Gel techniques. European Polymer Journal, 2009, 45(10): 2767-2778. |
[24] | ZOU MINGZHONG, LI JIAXIN, WEN WEIWEI, et al.Silver- incorporated composites of Fe2O3 carbon nanofibers as anodes for high-performance lithium batteries. Journal of Power Sources, 2014, 270: 468-474. |
[25] | ZHU JIADENG, LU YAO, CHEN CHEN, et al.Porous one-dimensional carbon/iron oxide composite for rechargeable lithium-ion batteries with high and stable capacity. Journal of Alloys and Compounds, 2016, 672: 79-85. |
[26] | CHO JUNG-SANG, HONG YOUNG-JUN, KANG YUN-CHAN, et al.Design and synthesis of bubble-nanorod-structured Fe2O3-carbon nanofibers as advanced anode material for Li-ion batteries. ACS Nano, 2015, 4(9): 4025-4035. |
[27] | YANG X L, ZHANG P C, WEN Z Y, et al.High performance silicon/ carbon composite prepared by in situ carbon-thermal reduction for lithium ion batteries. Journal of Alloys and Compounds, 2010, 496(1/2): 403-406. |
[28] | LIU LONG, YANG XIANGFENG, LV CHUNXIAO, et al.Seaweed-derived route to Fe2O3 hollow nanoparticles/n-doped graphene aerogels with high lithium ion storage performance. ACS Applied Materials & Interfaces, 2016, 8(11): 7047-7053. |
[29] | CHENG YONGLIANG, ZOU BINGLIN, WANG CHUNJIE, et al.Formation mechanism of Fe2O3 hollow fibers by direct annealing of the electrospun composite fibers and their magnetic, electrochemical properties. CrystEngComm, 2011, 13: 2863-2870. |
[30] | CHERIAN C T, SUNDARAMURTHY J, KALAIVANI M, et al.Electrospun α-Fe2O3 nanorods as a stable, high capacity anode material for Li-ion batteries. Journal of Materials Chemistry, 2012, 22: 12198-12204. |
[1] | WANG Yutong, ZHANG Feifan, XU Naicai, WANG Chunxia, CUI Lishan, HUANG Guoyong. Research Progress of LiTi2(PO4)3 Anode for Aqueous Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(5): 481-492. |
[2] | WANG Jing, XU Shoudong, LU Zhonghua, ZHAO Zhuangzhuang, CHEN Liang, ZHANG Ding, GUO Chunli. Hollow-structured CoSe2/C Anode Materials: Preparation and Sodium Storage Properties for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(12): 1344-1350. |
[3] | LIU Cheng, ZHAO Qian, MOU Zhiwei, LEI Jiehong, DUAN Tao. Adsorption Properties of Novel Bismuth-based SiOCNF Composite Membrane for Radioactive Gaseous Iodine [J]. Journal of Inorganic Materials, 2022, 37(10): 1043-1050. |
[4] | ZHANG Xiaoshan, WANG Bing, WU Nan, HAN Cheng, LIU Haiyan, WANG Yingde. Infrared Radiation Shielded SiZrOC Nanofiber Membranes: Preparation and High-temperature Thermal Insulation Performance [J]. Journal of Inorganic Materials, 2022, 37(1): 93-100. |
[5] | MA Lingling, CHANG Jiang. Nd-doped Calcium Silicate: Photothermal Effect, Fluorescence Performance, and Biological Properties of Its Composite Electrospun Membrane [J]. Journal of Inorganic Materials, 2021, 36(9): 974-980. |
[6] | LI Kunru, HU Xinghui, ZHANG Zhengfu, GUO Yuzhong, HUANG Ruian. Three-dimensional Porous Biogenic Si/C Composite for High Performance Lithium-ion Battery Anode Derived from Equisetum Fluviatile [J]. Journal of Inorganic Materials, 2021, 36(9): 929-935. |
[7] | CHU Yuxing, LIU Hairui, YAN Shuang. Preparation and Gas Sensing Properties of SnO2/NiO Composite Semiconductor Nanofibers [J]. Journal of Inorganic Materials, 2021, 36(9): 950-958. |
[8] | LI Tingting, ZHANG Zhiming, HAN Zhengbo. Research Progress in Polymer-based Metal-organic Framework Nanofibrous Membranes Based on Electrospinning [J]. Journal of Inorganic Materials, 2021, 36(6): 592-600. |
[9] | ZHANG Wenjin, SHEN Qianqian, XUE Jinbo, LI Qi, LIU Xuguang, JIA Husheng. Preparation and Photoelectrochemical Water Oxidation of Hematite Nanobelts Containing Highly Ordered Oxygen Vacancies [J]. Journal of Inorganic Materials, 2021, 36(12): 1290-1296. |
[10] | ZHU Zhengwang,FENG Rui,LIU Yang,ZHANG Yang,XIE Wenhan,DONG Lijie. Preparation and Property of CoFe2O4 Nanofibers with Fishbone-like Structure [J]. Journal of Inorganic Materials, 2020, 35(9): 1011-1016. |
[11] | ZHAN Jing,XU Changfan,LONG Yiyu,LI Qihou. Bi2Mn4O10: Preparation by Polyacrylamide Gel Method and Electrochemical Performance [J]. Journal of Inorganic Materials, 2020, 35(7): 827-833. |
[12] | XIA Tian, MENG Xie, LUO Ting, ZHAN Zhongliang. La 3+-substituted Sr2Fe1.5Ni0.1Mo0.4O6-δ as Anodes for Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2020, 35(5): 617-622. |
[13] | ZHU Zeyang,WEI Jishi,HUANG Jianhang,DONG Xiangyang,ZHANG Peng,XIONG Huanming. Preparation of ZnO Nanorods with Lattice Vacancies and Their Application in Ni-Zn Battery [J]. Journal of Inorganic Materials, 2020, 35(4): 423-430. |
[14] | ZHENG Shiyou, DONG Fei, PANG Yuepeng, HAN Pan, YANG Junhe. Research Progress on Nanostructured Metal Oxides as Anode Materials for Li-ion Battery [J]. Journal of Inorganic Materials, 2020, 35(12): 1295-1306. |
[15] | GUO Si-Lin, KANG Shuai, LU Wen-Qiang. Ge Nanoparticles in MXene Sheets: One-step Synthesis and Highly Improved Electrochemical Property in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2020, 35(1): 105-111. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||