Journal of Inorganic Materials ›› 2018, Vol. 33 ›› Issue (3): 289-294.DOI: 10.15541/jim20170181
Special Issue: 乘风破浪的新能源材料
• Orginal Article • Previous Articles Next Articles
ZHANG Guo-Xiong1, CHEN Yue-Mei1, HE Zhen-Ni1, LIN Chuan2, CHEN Yi-Gang1, GUO Hai-Bo1
Received:
2017-04-17
Revised:
2017-07-05
Published:
2018-03-20
Online:
2018-03-12
About author:
ZHANG Guo-Xiong. E-mail: ZhangGX91@hotmail.com
CLC Number:
ZHANG Guo-Xiong, CHEN Yue-Mei, HE Zhen-Ni, LIN Chuan, CHEN Yi-Gang, GUO Hai-Bo. Surfactant Dependence of Nanostructured NiCo2S4 Films on Ni Foam for Superior Electrochemical Performance[J]. Journal of Inorganic Materials, 2018, 33(3): 289-294.
Fig. 3 TEM images of different NiCo2S4(a) NiCo2S4-pure; (b) NiCo2S4-CTAB; (c) NiCo2S4-PEG; (d) NiCo2S4-SDS; (e) SAED patterns; (f) HRTEM image of NiCo2S4-SDS
Electrode | Specific surface area/(m2•g-1) | Average pore size/nm | Specific capacitance/(F•g-1) |
---|---|---|---|
NiCo2S4-pure | 33.3 | 12.8 | 1056.7 |
NiCo2S4-CTAB | 27.3 | 26.5 | 983.3 |
NiCo2S4-PEG | 39.2 | 12.4 | 2155.5 |
NiCo2S4-SDS | 53.3 | 14.7 | 2635.9 |
Table 1 Specific surface area, average pore size and specific capacitance at current density of 1 A/g of different NiCo2S4 electrodes
Electrode | Specific surface area/(m2•g-1) | Average pore size/nm | Specific capacitance/(F•g-1) |
---|---|---|---|
NiCo2S4-pure | 33.3 | 12.8 | 1056.7 |
NiCo2S4-CTAB | 27.3 | 26.5 | 983.3 |
NiCo2S4-PEG | 39.2 | 12.4 | 2155.5 |
NiCo2S4-SDS | 53.3 | 14.7 | 2635.9 |
Fig. 5 Electrochemical properties of different NiCo2S4(a) CV curves at 5 mV/s; (b) Discharge curves at 0.5 A/g; (c) CV curves of NiCo2S4-SDS electrodes at 2 mV/s and 5-20 mV/s (insert); (d) Charge-discharge curves of NiCo2S4-SDS electrodes at 0.75-20 A/g
Fig. 6 Electrochemical properties of different NiCo2S4(a) The specific capacitance of NiCo2S4 electrodes at different current densities; (b) EIS of NiCo2S4 electrodes; (c) Cycling performance of NiCo2S4 electrodes at 5 A/g
[1] | CONWAY B E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications Germany: Springer, 1999. |
[2] | SIMON P, GOGOTSI Y.Materials for electrochemical capacitors. Nature Materials, 2008, 7(11): 845-854. |
[3] | ARICO A S, BRUCE P, SCROSATI B, et al.Nanostructured materials for advanced energy conversion and storage devices. Nature Materials, 2005, 4(5): 366-377. |
[4] | WANG G P, ZHANG L, ZHANG J J.A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews, 2012, 41(2): 797-828. |
[5] | KONG W, LU C C, ZHANG W, et al.Homogeneous core-shell NiCo2S4 nanostructures supported on nickel foam for supercapacitors. Journal of Materials Chemistry A, 2015, 3(23): 12452-12460. |
[6] | DING R, ZHANG M Y, YAO Y H, et al.Crystalline NiCo2S4 nanotube array coated with amorphous NiCoxSy for supercapacitor electrodes. Journal of Colloid and Interface Science, 2016, 467: 140-147. |
[7] | KAEMPGEN M, CHAN C K, MA J, et al.Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Letters, 2009, 9(5): 1872-1876. |
[8] | HUANG C, GROBERT N, WATT A A R, et al. Layer-by-layer spray deposition and unzipping of single-wall carbon nanotube-based thin film electrodes for electrochemical capacitors. Carbon, 2013, 61: 525-536. |
[9] | JANG Y, JO J, CHOI Y M, et al.Activated carbon nanocomposite electrodes for high performance supercapacitors. Electrochimica Acta, 2013, 102: 240-245. |
[10] | YUAN C Z, LI J Y, HOU L R, et al.Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Advanced Functional Materials, 2012, 22(21): 4592-4597. |
[11] | ZHANG G Q, LOU X W.General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high- performance electrodes for supercapacitors. Advanced Materials, 2013, 25(7): 976-979. |
[12] | WAN H Z, JIANG J J, YU J W, et al.Cobalt sulfide nanotube arrays grown on FTO and graphene membranes for high-performance supercapacitor application. Applied Surface Science, 2014, 311: 793-798. |
[13] | YAN X Y, TONG X L, MA L, et al.Synthesis of porous NiS nanoflake arrays by ion exchange reaction from NiO and their high performance supercapacitor properties. Materials Letter, 2014, 124: 133-136. |
[14] | PU J, WANG T T, WANG H Y, et al.Direct growth of NiCo2S4 nanotube arrays on nickel foam as high-performance binder-free electrodes for supercapacitors. ChemPlusChem, 2014, 79(4): 577-583. |
[15] | SU Z J, YANG C, XIE B H, et al.Scalable fabrication of MnO2 nanostructure deposited on free-standing Ni nanocone arrays for ultrathin, flexible, high-performance micro-supercapacitor. Energy & Environmental Science, 2014, 7(8): 2652-2659. |
[16] | HU W, CHEN R Q, XIE W, et al.CoNi2S4 nanosheet arrays supported on nickel foams with ultrahigh capacitance for aqueous asymmetric supercapacitor applications. ACS Applied Materials & Interfaces, 2014, 6(21): 19318-19326. |
[17] | ZHU Y R, WU Z B, JING M J, et al.Mesoporous NiCo2S4 nanoparticles as high-performance electrode materials for supercapacitors. Journal of Power Sources, 2015, 273: 584-590. |
[18] | ZHU T, ZHENG S J, LU Y S, et al.Influence of iron concentration and post-annealing temperature on structure and pseudocapacitive characteristics of a MnO2-Fe2O3 nanocomposite. Journal of Solid State Electrochemistry, 2015, 19(2): 381-390. |
[19] | CHEN H C, JIANG J J, ZHANG L, et al, WAN H Z. In situ growth of NiCo2S4 nanotube arrays on Ni foam for supercapacitors: maximizing utilization efficiency at high mass loading to achieve ultrahigh areal pseudocapacitance. Journal of Power Sources, 2014, 254: 249-257. |
[20] | NGUYEN V H, LAMIEL C, SHIM J J.Hierarchical mesoporous graphene@Ni-Co-S arrays on nickel foam for high-performance supercapacitors. Electrochimica Acta, 2015, 161: 351-357. |
[21] | ZHU T, ZHANG G X, HU T, et al.Synthesis of NiCo2S4-based nanostructured electrodes supported on nickel foams with superior electrochemical performance. Journal of Materials Science, 2016, 51(4): 1903-1913. |
[22] | ZHANG X, ZHAO Y Q, XU C L.Surfactant dependent self-organization of Co3O4 nanowires on Ni foam for high performance supercapacitors: from nanowire microspheres to nanowire paddy fields. Nanoscale, 2014, 6(7): 3638-3646. |
[23] | YANG J Q, GUO W, LI D, et al.Hierarchical porous NiCo2S4 hexagonal plates: formation via chemical conversion and application in high performance supercapacitors. Electrochimica Acta, 2014, 144: 16-21. |
[24] | YU L, ZHANG L, WU H B, et al.Formation of NixCo3-xS4 hollow nanoprisms with enhanced pseudocapacitive properties. Angewandte Chemie-International Edition, 2014, 53(14): 3711-3714. |
[25] | CHEN H C, JIANG J J, ZHANG L, et al.Highly conductive NiCo2S4 urchin-like nanostructures for high-rate pseudocapacitors. Nanoscale, 2013, 5(19): 8879-8883. |
[26] | GAO Y Y, CHEN S L, CAO D X, et al.Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam. Journal of Power Sources, 2010, 195(6): 1757-1760. |
[27] | YUAN L Y, LU X H, XIAO X, et al.Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure. ACS Nano, 2012, 6(1): 656-661. |
[1] | YAO Yishuai, GUO Ruihua, AN Shengli, ZHANG Jieyu, CHOU Kuochih, ZHANG Guofang, HUANG Yarong, PAN Gaofei. In-situ Loaded Pt-Co High Index Facets Catalysts: Preparation and Electrocatalytic Performance [J]. Journal of Inorganic Materials, 2023, 38(1): 71-78. |
[2] | ZHANG Xian, ZHANG Ce, JIANG Wenjun, FENG Deqiang, YAO Wei. Synthesis, Electronic Structure and Visible Light Photocatalytic Performance of Quaternary BiMnVO5 [J]. Journal of Inorganic Materials, 2022, 37(1): 58-64. |
[3] | LIU Fangfang, CHUAN Xiuyun, YANG Yang, LI Aijun. Influence of N/S Co-doping on Electrochemical Property of Brucite Template Carbon Nanotubes [J]. Journal of Inorganic Materials, 2021, 36(7): 711-717. |
[4] | WANG Tingting, SHI Shumei, LIU Chenyuan, ZHU Wancheng, ZHANG Heng. Synthesis of Hierarchical Porous Nickel Phyllosilicate Microspheres as Efficient Adsorbents for Removal of Basic Fuchsin [J]. Journal of Inorganic Materials, 2021, 36(12): 1330-1336. |
[5] | SONG Keke, HUANG Hao, LU Mengjie, YANG Anchun, WENG Jie, DUAN Ke. Hydrothermal Preparation and Characterization of Zn, Si, Mg, Fe Doped Hydroxyapatite [J]. Journal of Inorganic Materials, 2021, 36(10): 1091-1096. |
[6] | XIAO Yumin, Li Bin, QIN Lizhao, LIN Hua, LI Qing, LIAO Bin. Efficient Preparation of CuGeO3 with Controllable Morphology Using CuCl2 as Copper Source [J]. Journal of Inorganic Materials, 2021, 36(1): 69-74. |
[7] | WANG Juhan,WEN Xiong,LIU Chengchao,ZHANG Yuhua,ZHAO Yanxi,LI Jinlin. Preparation and Fischer-Tropsch Synthesis Performance of Hierarchical Co/Al-SiO2 Catalyst [J]. Journal of Inorganic Materials, 2020, 35(9): 999-1004. |
[8] | ZHANG Dongshuo,CAI Hao,GAO Kaiyin,MA Zichuan. Preparation and Visible-light Photocatalytic Degradation on Metronidazole of Zn2SiO4-ZnO-biochar Composites [J]. Journal of Inorganic Materials, 2020, 35(8): 923-930. |
[9] | ZHAN Jing,XU Changfan,LONG Yiyu,LI Qihou. Bi2Mn4O10: Preparation by Polyacrylamide Gel Method and Electrochemical Performance [J]. Journal of Inorganic Materials, 2020, 35(7): 827-833. |
[10] | WANG Zhihu,ZHANG Jumei,BAI Lijing,ZHANG Guojun. Mg(OH)2 Film on Micro-arc Oxidation Ceramic Coating of AZ31 Magnesium Alloy: Preparation and Corrosion Resistance [J]. Journal of Inorganic Materials, 2020, 35(6): 709-716. |
[11] | ZHU Zeyang,WEI Jishi,HUANG Jianhang,DONG Xiangyang,ZHANG Peng,XIONG Huanming. Preparation of ZnO Nanorods with Lattice Vacancies and Their Application in Ni-Zn Battery [J]. Journal of Inorganic Materials, 2020, 35(4): 423-430. |
[12] | ZHANG Zhibin, ZHOU Runze, DONG Zhimin, CAO Xiaohong, LIU Yunhai. Adsorption of U(VI)-CO3/Ca-U(VI)-CO3 by Amidoxime-functionalized Hydrothermal Carbon [J]. Journal of Inorganic Materials, 2020, 35(3): 352-358. |
[13] | WANG Jinmin, YU Hongyu, MA Dongyun. Progress in the Preparation and Application of Nanostructured Manganese Dioxide [J]. Journal of Inorganic Materials, 2020, 35(12): 1307-1314. |
[14] | TANG Danlei, JIA Lihua, ZHAO Zhenlong, YANG Rui, WANG Xin, GUO Xiangfeng. EDTA Assistant Preparation and Gas Sensing Properties of Co3O4 Nanomaterials [J]. Journal of Inorganic Materials, 2020, 35(11): 1214-1222. |
[15] | LI Xue-Lin, ZHU Jian-Feng, JIAO Yu-Hong, HUANG Jia-Xuan, ZHAO Qian-Nan. Manganese Dioxide Morphology on Electrochemical Performance of Ti3C2Tx@MnO2 Composites [J]. Journal of Inorganic Materials, 2020, 35(1): 119-125. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||