Journal of Inorganic Materials ›› 2018, Vol. 33 ›› Issue (3): 251-258.DOI: 10.15541/jim20170265
Special Issue: 钙钛矿材料
• Orginal Article • Next Articles
ZHOU Zhi-Yong, CHEN Tao, DONG Xian-Lin
Received:
2017-05-27
Revised:
2017-06-30
Published:
2018-03-20
Online:
2018-03-12
About author:
ZHOU Zhi-Yong. E-mail: zyzhou@mail.sic.ac.cn
Supported by:
CLC Number:
ZHOU Zhi-Yong, CHEN Tao, DONG Xian-Lin. Research Progress of Perovskite Layer Structured Piezoelectric Ceramics with Super High Curie Temperature[J]. Journal of Inorganic Materials, 2018, 33(3): 251-258.
Fig. 1 Relationship between d33 and Curie temperature Tc of piezoceramics with different crystal structures(Inset showing schematic diagrams of perovskite, tungsten bronze, bismuth layer and perovskite layer structures)
PY* | Formula | Structure | Ferroelectric | Ref. |
---|---|---|---|---|
1955 | Cd2Nb2O7 | Pyrochlore | Yes | [17] |
1955 | Ca2Ta2O7 | Pyrochlore | No | [17] |
1955 | Cd2Ta2O7 | Pyrochlore | No | [17] |
1955 | Pb2Ta2O7 | Pyrochlore | No | [17] |
1970 | Ca2Nb2O7 | PLS | Yes | [19] |
1974 | La2Ti2O7 | PLS | Yes | [21] |
1974 | Nd2Ti2O7 | PLS | Yes | [22] |
1975 | Sr2Nb2O7 | PLS | Yes | [23] |
1975 | Sr2Ta2O7 | PLS | Yes | [12] |
1980 | Pr2Ti2O7 | PLS | Yes | [24] |
1980 | Ce2Ti2O7 | Pyrochlore | No | [24] |
1987 | Sm2Ti2O7 | Pyrochlore | No | [25] |
2015 | Ce2Ti2O7 | PLS | Yes | [26] |
Table 1 A2B2O7-type compounds and their structures
PY* | Formula | Structure | Ferroelectric | Ref. |
---|---|---|---|---|
1955 | Cd2Nb2O7 | Pyrochlore | Yes | [17] |
1955 | Ca2Ta2O7 | Pyrochlore | No | [17] |
1955 | Cd2Ta2O7 | Pyrochlore | No | [17] |
1955 | Pb2Ta2O7 | Pyrochlore | No | [17] |
1970 | Ca2Nb2O7 | PLS | Yes | [19] |
1974 | La2Ti2O7 | PLS | Yes | [21] |
1974 | Nd2Ti2O7 | PLS | Yes | [22] |
1975 | Sr2Nb2O7 | PLS | Yes | [23] |
1975 | Sr2Ta2O7 | PLS | Yes | [12] |
1980 | Pr2Ti2O7 | PLS | Yes | [24] |
1980 | Ce2Ti2O7 | Pyrochlore | No | [24] |
1987 | Sm2Ti2O7 | Pyrochlore | No | [25] |
2015 | Ce2Ti2O7 | PLS | Yes | [26] |
Compound | Crystal system | Space group | Lattice constants | Cleavage plane | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|
a/nm | b/nm | c/nm | β | ||||||
Sr2Nb2O7 | Orthorhombic | Cmc21 | 0.3933 | 2.6726 | 0.5683 | — | (010) | [27] | |
Sr2Ta2O7 | Orthorhombic | Cmc21 | 0.3950 | 2.7270 | 0.5700 | — | (010) | [28] | |
Ca2Nb2O7 | Monoclinic | P21 | 1.3400 | 0.5510 | 0.7720 | 98°17° | (100) | [29] | |
La2Ti2O7 | Monoclinic | P21 | 1.3019 | 0.5547 | 0.7811 | 98°43° | (100) | [21] | |
Nd2Ti2O7 | Monoclinic | P21 | 1.3020 | 0.5480 | 0.7680 | 98°28° | (100) | [22] | |
Pr2Ti2O7 | Monoclinic | P21 | 0.7715 | 0.5488 | 1.3004 | 98°33° | (001) | [30] |
Table 2 Crystallographic properties of A2B2O7-type PLS compounds
Compound | Crystal system | Space group | Lattice constants | Cleavage plane | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|
a/nm | b/nm | c/nm | β | ||||||
Sr2Nb2O7 | Orthorhombic | Cmc21 | 0.3933 | 2.6726 | 0.5683 | — | (010) | [27] | |
Sr2Ta2O7 | Orthorhombic | Cmc21 | 0.3950 | 2.7270 | 0.5700 | — | (010) | [28] | |
Ca2Nb2O7 | Monoclinic | P21 | 1.3400 | 0.5510 | 0.7720 | 98°17° | (100) | [29] | |
La2Ti2O7 | Monoclinic | P21 | 1.3019 | 0.5547 | 0.7811 | 98°43° | (100) | [21] | |
Nd2Ti2O7 | Monoclinic | P21 | 1.3020 | 0.5480 | 0.7680 | 98°28° | (100) | [22] | |
Pr2Ti2O7 | Monoclinic | P21 | 0.7715 | 0.5488 | 1.3004 | 98°33° | (001) | [30] |
Fig. 3 (a) Sketch of the largest atomic displacements associated with the strongest instability mode obtained for the Cmcm phase of La2Ti2O7; (b) Sketch of a typical anti-ferrodistortive mode occurring in an ideal perovskite structure of BaTiO3. The arrows on the side represent the electric dipoles associated to the displacement of oxygens in different y-planes[34]
Fig. 5 SEM images of PLS high temperature piezoceramics fabricated with different techniques(a) Sr2Nb2O7 by solid state reaction method[42]; (b) Sr2Nb2O7 by spark plasma sintering[15]; (c) 0.3wt%ZnO-Sr2Nb2O7 by solid state reaction method[41]; (d) Ce2Ti2O7 at 4 GPa, 1100℃[26]
Materials | Process | Ts/℃ | Density/% | Tc/℃ | d33/(pC/N) | Ref. |
---|---|---|---|---|---|---|
Sr2(Nb1-xTax)2O7 | HF | 1400 | 95 | 823 | 1.6 | [38] |
Sr2-xBaxNb2O7 | SPS | 1200 | 95 | 1175 | 3.6 | [45] |
La2-xCexTi2O7 | SPS | 1400 | 95 | 1440 | 3.9 | [46] |
(Sr1-xCex)2Nb2O7 | SPS | 1350 | 98 | 1327 | 1.5 | [47] |
Sr2(Nb1-xWx)2O7 | SPS | 1425 | 98 | 1308 | — | [47] |
(SmxLa1-x)Ti2O7 | SPS | 1400 | — | 1430 | 2.8 | [48] |
(BixLa1-x)Ti2O7 | SPS | 1350 | 95 | 1395 | 3.6 | [49] |
Sr2Nb2O7-xwt%La2O3 | SSR | 1350 | — | — | — | [43] |
Ca2-xBaxNb2O7 | SSR | 1350 | 95 | 1280 | — | [44] |
Sr2(Nb1-xVx)2O7 | SSR | 1200 | 96 | — | — | [40] |
Sr2Nb2O7-xwt%ZnO | SSR | 1400 | 97 | — | — | [41] |
Sr2Nb2O7-xwt%CuO | SSR | 1180 | 98 | 1342 | 1.1 | [42] |
(1-x)Sr2Nb2O7-xNa0.5Bi0.5TiO3 | SSR | 1420 | 96.8 | 1330 | 1.0 | [51] |
Table 3 Characteristics of PLS piezoceramics fabricated via different methods
Materials | Process | Ts/℃ | Density/% | Tc/℃ | d33/(pC/N) | Ref. |
---|---|---|---|---|---|---|
Sr2(Nb1-xTax)2O7 | HF | 1400 | 95 | 823 | 1.6 | [38] |
Sr2-xBaxNb2O7 | SPS | 1200 | 95 | 1175 | 3.6 | [45] |
La2-xCexTi2O7 | SPS | 1400 | 95 | 1440 | 3.9 | [46] |
(Sr1-xCex)2Nb2O7 | SPS | 1350 | 98 | 1327 | 1.5 | [47] |
Sr2(Nb1-xWx)2O7 | SPS | 1425 | 98 | 1308 | — | [47] |
(SmxLa1-x)Ti2O7 | SPS | 1400 | — | 1430 | 2.8 | [48] |
(BixLa1-x)Ti2O7 | SPS | 1350 | 95 | 1395 | 3.6 | [49] |
Sr2Nb2O7-xwt%La2O3 | SSR | 1350 | — | — | — | [43] |
Ca2-xBaxNb2O7 | SSR | 1350 | 95 | 1280 | — | [44] |
Sr2(Nb1-xVx)2O7 | SSR | 1200 | 96 | — | — | [40] |
Sr2Nb2O7-xwt%ZnO | SSR | 1400 | 97 | — | — | [41] |
Sr2Nb2O7-xwt%CuO | SSR | 1180 | 98 | 1342 | 1.1 | [42] |
(1-x)Sr2Nb2O7-xNa0.5Bi0.5TiO3 | SSR | 1420 | 96.8 | 1330 | 1.0 | [51] |
[1] | 董显林. 功能陶瓷研究进展与发展趋势. 中国科学院院刊, 2003, 6: 407-412. |
[2] | LI Y X.Some hot topics in electroceramics research. Journal of Inorganic Materials, 2014, 29(1): 1-5. |
[3] | JIANG X P, KIM K, ZHANG S, et al.High-temperature piezoelectric sensing. Sensors, 2014, 14(1): 144-169. |
[4] | ANTON S R, SODANO H A.A review of power harvesting using piezoelectric materials (2003-2006). Smart Mater. Struct., 2007, 16(3): R1-R21. |
[5] | LEE H J, ZHANG S J, COHEN Y, et al.High temperature, high power piezoelectric composite transducers. Sensors, 2014, 14(8): 14526-14552. |
[6] | ZHANG S J, JIANG X N, LAPSLEY M, et al. Piezoelectric accelerometers for ultrahigh temperature applications. Appl. Phys. Lett., 2010, 96(1): 013506-1-3. |
[7] | ZHANG S J, YU F P.Piezoelectric materials for high temperature sensors. [J]. Am. Ceram. Soc., 2010, 94(10): 3153-3170. |
[8] | NIE R, CHEN Q, LIU H, et al. MnO2-doped (Ca0.4Sr0.6)Bi4Ti4O15 high-temperature piezoelectric ceramics with improved thermal stability. J. Mater. Sci., 2016, 51(11): 5104-5112. |
[9] | 李玉臣, 包绍明, 周志勇, 等.一种高温下稳定使用的铋层状结构压电陶瓷材料及其制备方法. 中国, C04B35/462, ZL200610147892.3. 2007.07.11. |
[10] | ZHOU Z Y, LI Y C, HUI S P, et al. Effect of tungsten doping in bismuth-layered Na0.5Bi2.5Nb2O9 high temperature piezoceramics. Appl. Phys. Lett., 2014, 104(1): 012904-1-4. |
[11] | 周志勇, 李玉臣, 董显林, 等.提高铋层状结构压电陶瓷材料的压电性能以及其温度稳定性的方法. 中国, C04B41/80, ZL201510107721.7. 2015.06.24. |
[12] | NANAMATSU S, KIMURA M, DOI K, et al. Crystallographic and dielectric properties of ferroelectric A2B2O7 (A=Sr, B=Ta, Nb) crystals and their solid solutions. J. Phys. Soc. Jpn., 1975, 38(3): 817-824. |
[13] | GAO Z P, YAN H X, NING H P, et al.Ferroelectricity of Pr2Ti2O7 ceramics with super high Curie point. Adv. Appl. Ceram., 2013, 112(3): 69-74. |
[14] | YAN H X, NING H P, KAN Y, et al.Piezoelectric ceramics with super-high Curie points .[J]. Am. Ceram. Soc., 2009, 92(10): 2270-2275. |
[15] | BRAHMAROUTU B, MESSING G L, TROLIER S.Densification and anisotropic grain growth in Sr2Nb2O7 .[J]. Mater. Sci., 2000, 35(22): 5673-5680. |
[16] | COOK W R, JAFFE H.Ferroelectricity in oxides of fluorite structure. Phys. Rev., 1952, 88(6): 1426. |
[17] | JONA F, SHIRANE G, PEPINSKY R.Dielectric, X-Ray and optical study of ferroelectric Cd2Nb2O7 and related compounds. Phys. Rev., 1955, 98(4): 903-909. |
[18] | ROWLAND J F, BRIGHT N F H, JONGEJAN A. The Crystallography of Compounds in the Calcium Oxide-niobium Pentoxide System. Adv. X-Ray Analysis: Volume 2 Proceedings of the Seventh Annual Conference on Applications of X-Ray Analysis, 1958, 2: 97-106. |
[19] | BALLMAN A A.Growth of piezoelectric and ferroelectric materials by the czochraiski technique .[J]. Am. Ceram. Soc., 1965, 48(2): 112-113. |
[20] | BRANDONAB J K, MEGAWA H D.On the crystal structure and properties of Ca2Nb2O7, “calcium pyroniobate”. Phil. Mag. A, 1970, 21(169): 189-194. |
[21] | NANAMATSU S, KIMURA M, DOI K, et al. A new ferroelectric: La2Ti2O7. Ferroelectrics, 1974, 8(1): 511-513. |
[22] | KIMURA M, NANAMATSU S, KAWAMURA T, et al.Ferroelectric, electrooptic and piezoelectric properties of Nd2Ti2O7 single crystal. Jpn. [J]. Appl. Phys. 1974, 13(9): 1473-1474. |
[23] | ISHIZAWA N, MARUMO F.The crystal structure of Sr2Nb2O7, a compound with perovskite-type slabs. Acta Cryst., 1975, 31(7): 1912-1915. |
[24] | SYCH A M, TITOV Y A, NEDILKO C A.Synthesis and study of ferroelectric compounds with layered structures .[J]. Inorganic Chem., 1980, 25(8): 2056-2061. |
[25] | SYCH A M, TITOV Y A, NEDILKO C A, et al.Study of the conditions for the isovalent substitution of rare-earth atoms in Ln2Ti2O7 with layered structure. [J]. Inorganic Chem., 1987, 32(11): 2625-2628. |
[26] | GAO Z P, LIU L, YAN H X, et al.Cerium titanate (Ce2Ti2O7): a ferroelectric ceramic with perovskite-like layered structure (PLS). J. Am. Ceram. Soc., 2015, 98(12): 3930-3934. |
[27] | NANAMATSU S, KIMURA M, DOI K, et al. Ferroelectric properties of Sr2Nb2O7 single crystal. J. Phys. Soc. Jpn., 1971, 30(1): 300-301. |
[28] | ISHIZAWA N, MARUMO F.Compound with perovskite-type slabs. II. the crystal structure of Sr2Ta2O7. Acta. Cryst., 1976, 32(9): 2564-2566. |
[29] | NANAMATSU S, KIMURA M.Ferroelectric properties of Ca2Nb2O7 single crystal .[J]. Phys. Soc. Jpn., 1971, 36(5): 597-602. |
[30] | PATWE S J, KATARI V, SALKE N P, et al.Structural and electrical properties of layered perovskite type Pr2Ti2O7: experimental and theoretical investigations. J. Mater. Chem. C, 2015, 3(17): 4570-4584. |
[31] | FILIPPETTI A, HILL N A. Coexistence of magnetism and ferroelectricity in perovskites. Phys. Rev. B, 2002, 65(19): 195120- 1-11. |
[32] | BHATTACHARJEE S, BOUSQUET E, GHOSEZ P. Engineering multiferroism in CaMnO3. Phys. Rev. Lett., 2009, 102(11): 117602- 1-4. |
[33] | CATALAN G, SCOTT J F.Physics and applications of bismuth ferrite. Adv. Mater., 2009, 21(24): 2463-2485. |
[34] | JORGE L P, JORGE I. Ab initio study of proper topological ferroelectricity in layered perovskite La2Ti2O7. Phys. Rev. B, 2011, 84(7): 075121-1-13. |
[35] | BRUYER E, SAYEDE A. Density functional calculations of the structural, electronic,ferroelectric properties of high-k titanate Re2Ti2O7 (Re = La and Nd). J. Appl. Phys., 2010, 108(5): 053705- 1-9. |
[36] | BRAHMAROUTU B, MESSING G L, MCKINSTRY S T.Molten salt synthesis of anisotropic Sr2Nb2O7 particles .[J]. Am. Ceram. Soc., 1999, 82(6): 1565-1568. |
[37] | PRASADARAO A V, SELVARAJ U, KOMARNENI S.Sol-Gel synthesis of strontium pyroniobate and calcium pyroniobate .[J]. Am. Ceram. Soc., 1992, 75(10): 2697-2701. |
[38] | FUIERER P A, SHROUT T R, NEWNHAM R E.Physical, electrical, and piezoelectric properties of hot-forged Sr2(NbTa)2O7 ceramics. Mat. Res. Soc. Symp. Proc., 1992, 276: 51-57. |
[39] | GAO Z P, SUZUKI T S, GRASSO S, et al.Highly anisotropic single crystal-like La2Ti2O7 ceramic produced by combined magnetic field alignment and templated grain growth .[J]. Eur. Ceram. Soc., 2015, 35(6): 1771-1776. |
[40] | SERAJI S, WU Y, LIMMER S, et al.Processing and properties of vanadium doped strontium niobate. Mat. Sci. Eng., 2002, 88(1): 73-78. |
[41] | IQBAL Y, MANAN A, SAFEEN M K, et al. ZnO as sintering additive in Sr2Nb2O7. J. Phys.: Conference Series, 2010, 241: 012029-1-4. |
[42] | CHEN T, LIANG R H, JIANG K, et al.Low-temperature sintering and electrical properties of Sr2Nb2O7 piezoceramics by CuO addition .[J]. Am. Ceram. Soc., 2017, 100(6): 2397-2401. |
[43] | FU C, LIU H, CHEN G, et al.Microstructure and electric properties of strontium lanthanum niobate ceramics. Ferroelectrics, 2012, 432(1): 8-13. |
[44] | LI C C, XIANG H C, QIN Y D, et al. Effects of barium substitution on the sintering behavior, dielectric properties of Ca2Nb2O7 ferroelectric ceramics. J. Adv. Diele.2017, 7(2): 1750013-1-5. |
[45] | GAO Z P, NING H P, CHEN C, et al.The effect of barium substitution on the ferroelectric properties of Sr2Nb2O7 ceramics .[J]. Am. Ceram. Soc., 2013, 96(4): 1163-1170. |
[46] | GAO Z P, YAN H X, NING H P, et al.Piezoelectric and dielectric properties of Ce substituted La2Ti2O7 ceramics .[J]. Eur. Ceram. Soc., 2013, 33(5): 1001-1008. |
[47] | NING H P, YAN H X, GAO Z P, et al.Effect of donor dopants cerium and tungsten on the dielectric and electrical properties of high Curie point ferroelectric strontium niobate. Ceram. Int., 2013, 39(7): 7669-7675. |
[48] | CHEN C, GAO Z P, YAN H X, et al.Crystallographic structure and ferroelectricity of (AxLa1-x)2Ti2O7 (A=Sm and Eu) solid solutions with high Tc. J. Am. Ceram. Soc., 2016, 99(2): 523-530. |
[49] | LI C C, XIANG H C, CHEN J W, et al.Phase transition, dielectric relaxation and piezoelectric properties of bismuth doped La2Ti2O7 ceramics. Ceram. Int., 2016, 42(9): 11453-11458. |
[50] | TITOV V V, AKHNAZAROVA V V, REZNITCHENKO L A, et al.Evolution of fractal grain structures in NaNbO3-Ca2Nb2O7 and NaNbO3-Sr2Nb2O7 systems. Ferroelectrics, 2004, 298(1): 335-339. |
[51] | CHEN T, LIANG R H, LI Y C, et al.Structure and electrical properties of perovskite layer (1-x)Sr2Nb2O7-x(Na0.5Bi0.5)TiO3 high- temperature piezoceramics. J. Am. Ceram. Soc., 2017, 100(4): 1065-1072. |
[52] | GAO Z P, LU C J, WANG Y H, et al. Super stable ferroelectrics with high Curie point. Sci. Rep., 2016, 6: 24139-1-6. |
[1] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
[2] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[3] | CHEN Qiang, BAI Shuxin, YE Yicong. Highly Thermal Conductive Silicon Carbide Ceramics Matrix Composites for Thermal Management: a Review [J]. Journal of Inorganic Materials, 2023, 38(6): 634-646. |
[4] | LIN Junliang, WANG Zhanjie. Research Progress on Ferroelectric Superlattices [J]. Journal of Inorganic Materials, 2023, 38(6): 606-618. |
[5] | NIU Jiaxue, SUN Si, LIU Pengfei, ZHANG Xiaodong, MU Xiaoyu. Copper-based Nanozymes: Properties and Applications in Biomedicine [J]. Journal of Inorganic Materials, 2023, 38(5): 489-502. |
[6] | YUAN Jingkun, XIONG Shufeng, CHEN Zhangwei. Research Trends and Challenges of Additive Manufacturing of Polymer-derived Ceramics [J]. Journal of Inorganic Materials, 2023, 38(5): 477-488. |
[7] | YOU Junqi, LI Ce, YANG Dongliang, SUN Linfeng. Double Dielectric Layer Metal-oxide Memristor: Design and Applications [J]. Journal of Inorganic Materials, 2023, 38(4): 387-398. |
[8] | DU Jianyu, GE Chen. Recent Progress in Optoelectronic Artificial Synapse Devices [J]. Journal of Inorganic Materials, 2023, 38(4): 378-386. |
[9] | YANG Yang, CUI Hangyuan, ZHU Ying, WAN Changjin, WAN Qing. Research Progress of Flexible Neuromorphic Transistors [J]. Journal of Inorganic Materials, 2023, 38(4): 367-377. |
[10] | QI Zhanguo, LIU Lei, WANG Shouzhi, WANG Guogong, YU Jiaoxian, WANG Zhongxin, DUAN Xiulan, XU Xiangang, ZHANG Lei. Progress in GaN Single Crystals: HVPE Growth and Doping [J]. Journal of Inorganic Materials, 2023, 38(3): 243-255. |
[11] | LIN Siqi, LI Airan, FU Chenguang, LI Rongbing, JIN Min. Crystal Growth and Thermoelectric Properties of Zintl Phase Mg3X2 (X=Sb, Bi) Based Materials: a Review [J]. Journal of Inorganic Materials, 2023, 38(3): 270-279. |
[12] | ZHANG Chaoyi, TANG Huili, LI Xianke, WANG Qingguo, LUO Ping, WU Feng, ZHANG Chenbo, XUE Yanyan, XU Jun, HAN Jianfeng, LU Zhanwen. Research Progress of ScAlMgO4 Crystal: a Novel GaN and ZnO Substrate [J]. Journal of Inorganic Materials, 2023, 38(3): 228-242. |
[13] | CHEN Kunfeng, HU Qianyu, LIU Feng, XUE Dongfeng. Multi-scale Crystallization Materials: Advances in in-situ Characterization Techniques and Computational Simulations [J]. Journal of Inorganic Materials, 2023, 38(3): 256-269. |
[14] | LIU Yan, ZHANG Keying, LI Tianyu, ZHOU Bo, LIU Xuejian, HUANG Zhengren. Electric-field Assisted Joining Technology for the Ceramics Materials: Current Status and Development Trend [J]. Journal of Inorganic Materials, 2023, 38(2): 113-124. |
[15] | XIE Bing, CAI Jinxia, WANG Tongtong, LIU Zhiyong, JIANG Shenglin, ZHANG Haibo. Research Progress of Polymer-based Multilayer Composite Dielectrics with High Energy Storage Density [J]. Journal of Inorganic Materials, 2023, 38(2): 137-147. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||