Journal of Inorganic Materials ›› 2018, Vol. 33 ›› Issue (1): 53-59.DOI: 10.15541/jim20170191
• Orginal Article • Previous Articles Next Articles
DENG Min, JIANG Qi, FANG Yuan, LI Huan, QIU Jia-Xin, LU Xiao-Ying
Received:
2017-04-20
Revised:
2017-05-27
Published:
2018-01-23
Online:
2017-12-15
Supported by:
CLC Number:
DENG Min, JIANG Qi, FANG Yuan, LI Huan, QIU Jia-Xin, LU Xiao-Ying. Carbon Nanotubes/Polyaniline Chemically Modified Electrode: Preparation and Ascorbic Acid Detection[J]. Journal of Inorganic Materials, 2018, 33(1): 53-59.
Fig. 3 CV curves of the obtained electrodes in substrate solution (a, pH=6.0 PBS) and detection solution (b, pH=6.0 PBS containing 5.0×10-5 mol/L AA) at a scan rate of 20 mV/s^Electrode: (A) GE; (B)Ⅰ; (C)Ⅱ; (D) PANI-CME; (E) Ⅲ; F, Ⅳ)
Fig. 4 Electrochemical test calibration curves of the AA based on the electrode Ⅳ ((A) CV curves at different AA concentrations: 0.5, 1.0, 5.0, 10.0, 50.0, 100.0, 200.0, 400.0, 450.0 and 500.0×10-6 mol/L in pH=6.0 PBS with 20 mV/s scan rate, the inset is an enlarged view; (B) relationship between the Ip and AA concentrations; (C) the calibration curve of AA concentration and Ip) and electrode Ⅲ ((D) CV curves in different AA concentrations: 1.0, 5.0, 10.0, 50.0, 100.0, 200.0, 400.0 and 450.0×10-6 mol/L in pH=6.0 PBS with 20 mV/s scan rate, the inset is an enlarged view; (E) relationship between the Ip and AA concentrations; (F) the calibration curve of AA concentration and Ip)
Modified electrode | Linear range/(mol·L-1) | Detection limit/(mol·L-1) | Ref. |
---|---|---|---|
PAn-p-aminobenzene sulfonic acid | (3.5-17.5)×10-5 | 7.5×10-6 | [31] |
Molecularly imprinted PAn | (5.0-40.0)×10-5 | 1.8×10-5 | [32] |
Poly (acriflavine) modified electrode | (3.0-20.0)×10-5 | 1.5×10-6 | [33] |
DBSA doped Polyaniline nanoparticles | (0.3-8.0)×10-6 | 8.3×10-6 | [34] |
modified electrode |
Table 1 Electrochemical determination performances of different electrodes for the AA
Modified electrode | Linear range/(mol·L-1) | Detection limit/(mol·L-1) | Ref. |
---|---|---|---|
PAn-p-aminobenzene sulfonic acid | (3.5-17.5)×10-5 | 7.5×10-6 | [31] |
Molecularly imprinted PAn | (5.0-40.0)×10-5 | 1.8×10-5 | [32] |
Poly (acriflavine) modified electrode | (3.0-20.0)×10-5 | 1.5×10-6 | [33] |
DBSA doped Polyaniline nanoparticles | (0.3-8.0)×10-6 | 8.3×10-6 | [34] |
modified electrode |
Fig. 5 Data of the stability testing ((A) relationship between Ip and the storing time of the Ⅳwith 2.0×10-4 mol/L AA solution in pH 6.0 PBS at 20 mV/s scan rate) and data of the anti-jamming testing ((B) interferences: DA, dopamine; Glc, glucose; UA, uric acid))
Samples | Detected (×10-6, mol·L-1) | Added (×10-6, mol·L-1) | Found (×10-6, mol·L-1) | Recovery/% | RSD/ (%, n=6) |
---|---|---|---|---|---|
1 | 10.54 | 20.00 | 30.02 | 97.4 | 2.5 |
2 | 40.00 | 51.37 | 102.1 | 1.9 | |
3 | 60.00 | 69.86 | 98.9 | 0.8 | |
4 | 80.00 | 91.48 | 101.2 | 1.0 |
Table 2 Determination of AA in the recovery experiments
Samples | Detected (×10-6, mol·L-1) | Added (×10-6, mol·L-1) | Found (×10-6, mol·L-1) | Recovery/% | RSD/ (%, n=6) |
---|---|---|---|---|---|
1 | 10.54 | 20.00 | 30.02 | 97.4 | 2.5 |
2 | 40.00 | 51.37 | 102.1 | 1.9 | |
3 | 60.00 | 69.86 | 98.9 | 0.8 | |
4 | 80.00 | 91.48 | 101.2 | 1.0 |
[1] | WU G, WU Y, LIU X, et al.An electrochemical ascorbic acid sensor based on palladium nanoparticles supported on graphene oxide.Analytica Chimica Acta, 2012, 745: 33-37. |
[2] | XI L, REN D, LUO J, et al.Electrochemical analysis of ascorbic acid using copper nanoparticles/polyaniline modified glassy carbon electrode.Journal of Electroanalytical Chemistry, 2010, 650(1): 127-134. |
[3] | DONG Y P, HUANG L, ZhANG J,et al.. Electro-oxidation of ascorbic acid at bismuth sulfide nanorod modified glassy carbon electrode.Electrochimica Acta, 2012, 74: 189-193. |
[4] | ZHANG Y J, WEN Y, LIU Y, et al.Functionalization of single-walled carbon nanotubes with Prussian blue.Electrochemistry Communications, 2004, 6: 1180-1184. |
[5] | WANG Y, LI Y M, TANG L H, et al.Application of graphene-modified electrode for selective detection of dopamine.Electrochemistry Communications, 2009, 11: 889-892. |
[6] | ZUO X, ZHANG H, LI N.An electrochemical biosensor for determination of ascorbic acid by cobalt (II) phthalocyanine- multi-walled carbon nanotubes modified glassy carbon electrode.Sensors and Actuators B: Chemical, 2012, 161(1): 1074-1079. |
[7] | LI F, TANG C, LIU S, et al.Development of an electrochemical ascorbic acid sensor based on the incorporation of a ferricyanide mediator with a polyelectrolyte-calcium carbonate microsphere.Electrochimica Acta, 2010, 55(3): 838-843. |
[8] | ZHANG L, SHI H W, WANG C, et al.Preparation of a nanocomposite film from poly(diallydimethyl ammonium chloride) and gold nanoparticles by in-situ electrochemical reduction, and its application to SERS spectroscopy and sensing of ascorbic acid.Microchimica Acta, 2011, 173(3/4): 401-406. |
[9] | XI L, REN D, LUO J, et al.Electrochemical analysis of ascorbic acid using copper nanoparticles/polyaniline modified glassy carbon electrode.Journal of Electroanalytical Chemistry, 2010, 650(1): 127-134. |
[10] | RANA U, PAUL N D, MONDAL S, et al.Water soluble polyaniline coated electrode: a simple and nimble electrochemical approach for ascorbic acid detection.Synthetic Metals, 2014, 192: 43-49. |
[11] | IIJIMA S.Helical microtubules of graphitic carbon.Nature, 1991, 354(6348): 56. |
[12] | MUSAMEH M, WANG J, MERKOCI A, et al.Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes.Electrochemistry Communications, 2002, 4(10): 743-746. |
[13] | DEO R P, WANG J.Electrochemical detection of carbohydrates at carbon-nanotube modified glassy-carbon electrodes.Electrochemistry Communications, 2004, 6(3): 284-287. |
[14] | DONG S, ZHANG S, CHI L, et al.Electrochemical behaviors of amino acids at multiwall carbon nanotubes and Cu2O modified carbon paste electrode.Analytical Biochemistry, 2008, 381(2): 199-204. |
[15] | ZIYATDINOVA G, ZIGANSHINA E, BUDNIKOV H.Electrooxidation of morin on glassy carbon electrode modified by carboxylated single-walled carbon nanotubes and surfactants.Electrochimica Acta, 2014, 145: 209-216. |
[16] | LI Y, UMASANKAR Y, CHEN S M.Polyaniline and poly (flavin adenine dinucleotide) doped multi-walled carbon nanotubes for p-acetamidophenol sensor.Talanta, 2009, 79(2): 486-492. |
[17] | YUN J, IM J S, KIM H I, et al.Effect of oxyfluorination on gas sensing behavior of polyaniline-coated multi-walled carbon nanotubes.Applied Surface Science, 2012, 258(8): 3462-3468. |
[18] | ZOU Y, SUN L X, XU F.Biosensor based on polyaniline-Prussian Blue/multi-walled carbon nanotubes hybrid composites.Biosensors and Bioelectronics, 2007, 22(11): 2669-2674. |
[19] | YANG T, ZHOU N, ZHANG Y, et al.Synergistically improved sensitivity for the detection of specific DNA sequences using polyaniline nanofibers and multi-walled carbon nanotubes composites.Biosensors and Bioelectronics, 2009, 24(7): 2165-2170. |
[20] | MANISANKAR P, SUNDARI P L A,SASIKUMAR R, et al..Electroanalysis of some common pesticides using conducting polymer/multiwalled carbon nanotubes modified glassy carbon electrode.Talanta, 2008, 76(5): 1022-1028. |
[21] | PILAN L, RAICOPOL M.Highly selective and stable glucose biosensors based on polyaniline/carbon nanotubes composites.Journal of Scientific Bulletin, 2014, 76(1): 155-166. |
[22] | LUO X, KILLARD A J, MORRIN A, et al.Enhancement of a conducting polymer-based biosensor using carbon nanotube-doped polyaniline.Analytica Chimica Acta, 2006, 575(1): 39-44. |
[23] | XI L, ZHU Z, WANG F.Electrocatalytic oxidation of ascorbic acid on quaternized carbon nanotubes/ionic liquid-polyaniline composite film modified glassy carbon electrode.Journal of the Electrochemical Society, 2013, 160(6): H327-H334. |
[24] | CHAWLA S, RAWAL R, SHARMA S, et al.An amperometric biosensor based on laccase immobilized onto nickel nanoparticles/ carboxylated multiwalled carbon nanotubes/polyaniline modified gold electrode for determination of phenolic content in fruit juices.Biochemical Engineering Journal, 2012, 68: 76-84. |
[25] | FENG X, LI R, MA Y, et al.The synthesis of highly electroactive N-doped carbon nanotube/polyaniline/Au nanocomposites and their application to the biosensor.Synthetic Metals, 2011, 161(17): 1940-1945. |
[26] | DING L, LI Q, ZHOU D, et al.Modification of glassy carbon electrode with polyaniline/multi-walled carbon nanotubes composite: application to electro-reduction of bromate.Journal of Electroanalytical Chemistry, 2012, 668: 44-50. |
[27] | XU L, ZHU Y, YANG X, et al.Amperometric biosensor based on carbon nanotubes coated with polyaniline/dendrimer-encapsulated Pt nanoparticles for glucose detection.Materials Science and Engineering: C, 2009, 29(4): 1306-1310. |
[28] | JIANG Q, YANG R, HE Z, et al.Preparation and characterization of a graphite electrode containing carbon nanotubes grown in situ by flame synthesis.Electrochimica Acta, 2011, 56(14): 5205-5209. |
[29] | JIANG Q, SONG L J, YANG H, et al.Preparation and characterization on the carbon nanotube chemically modified electrode grown in situ.Electrochemistry Communications, 2008, 10(3): 424-427. |
[30] | MANESH K M, SANTHOSH P, KOMATHI S, et al.Electrochemical detection of celecoxib at a polyaniline grafted multiwall carbon nanotubes modified electrode.Analytica Chimica Acta, 2008, 626(1): 1-9. |
[31] | ZHANG L, ZHANG C, LIAN J.Electrochemical synthesis of polyaniline nano-networks on p-aminobenzene sulfonic acid functionalized glassy carbon electrode: its use for the simultaneous determination of ascorbic acid and uric acid.Biosensors and Bioelectronics, 2008, 24(4): 690-695. |
[32] | ROY A K, DHAND C, MALHOTRA B D.Molecularly imprinted polyaniline film for ascorbic acid detection.Journal of Molecular Recognition, 2011, 24(4): 700-706. |
[33] | NIEN P C, CHEN P Y, HO K C.On the amperometric detection and electrocatalytic analysis of ascorbic acid and dopamine using a poly (acriflavine)-modified electrode.Sensors and Actuators B: Chemical, 2009, 140(1): 58-64. |
[34] | AMBROSI A, MORRIN A, SMYTH M R, et al.The application of conducting polymer nanoparticle electrodes to the sensing of ascorbic acid.Analytica Chimica Acta, 2008, 609(1): 37-43. |
[35] | DEVI R, YADAV S, PUNDIR C S.Electrochemical detection of xanthine in fish meat by xanthine oxidase immobilized on carboxylated multiwalled carbon nanotubes/polyaniline composite film.Biochemical Engineering Journal, 2011, 58: 148-153. |
[36] | ZHONG H, YUAN R, CHAI Y, et al.In situ chemo-synthesized multi-wall carbon nanotube-conductive polyaniline nanocomposites: characterization and application for a glucose amperometric biosensor.Talanta, 2011, 85(1): 104-111. |
[1] | CHENG Qin, YANG Yong, YANG Lili. Pt-Au Dendritic Nanoparticles with High Oxidase-like Activity for Detection of Ascorbic Acid [J]. Journal of Inorganic Materials, 2020, 35(10): 1169-1176. |
[2] | DENG Min, JIANG Qi, DUAN Zhi-Hong, LIU Qing-Qing, JIANG Li, LU Xiao-Ying. Rice-like CuO Chemically Modified Electrode: Preparation and Detection for Glucose [J]. Journal of Inorganic Materials, 2019, 34(2): 152-158. |
[3] | FAN Mao, WANG Lin, PEI Cheng-Xin, SHI Wei-Qun. Alkalization Intercalation of MXene for Electrochemical Detection of Uranyl Ion [J]. Journal of Inorganic Materials, 2019, 34(1): 85-90. |
[4] | YAO Mei-Na, YANG Xian-Jin, CUI Zhen-Duo, ZHU Sheng-Li, LI Zhao-Yang, LIANG Yan-Qin. Detection of Cd2+ by Square Wave Anodic Stripping Voltammetry Using an Activated Bismuth-film Electrodes [J]. Journal of Inorganic Materials, 2019, 34(1): 91-95. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||