[1] |
YU Z N, TETARD L, ZHAI L, et al.Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions.Energy & Environmental Science, 2015, 8(3): 702-730.
|
[2] |
CHEN S, XING W, DUAN J J, et al.Nanostructured morphology control for efficient supercapacitor electrodes.Journal of Materials Chemistry A, 2013, 1(9): 2941-2954.
|
[3] |
GAO X L, XING W, ZHOU J, et al.Superior capacitive performance of active carbons derived from enteromorpha prolifera.Electrochimica Acta, 2014, 133: 459-466.
|
[4] |
ZHOU J, LI Z, XING W, et al.A new approach to tuning carbon ultramicropore size at sub-angstrom level for maximizing specific capacitance and CO2 uptake.Advanced Functional Materials, 2016, 26(44): 7955-7964.
|
[5] |
KANG G Y, CHEN Y, LI J J, et al.Comparison on structure and electrochemical performances of NiAl-LDH, CoAl-LDH and NiCoAl-LDH.Journal of Inorganic Materials, 2016, 31(11): 1230-1236.
|
[6] |
WANG C F, LU S, CHEN H L, et al.One-pot synthesis and application in asymmetric supercapacitors of Mn3O4@RGO nanocomposites.Journal of Inorganic Materials, 2016, 31(6): 581-587.
|
[7] |
SUN L, TIAN C G, LI M T, et al.From coconut shell to porous graphene-like nanosheets for high-power supercapacitors.Journal of Materials Chemistry A, 2013, 1(21): 6462-6470.
|
[8] |
LI X J, XING W, ZHOU J, et al.Excellent capacitive performance of a three-dimensional hierarchical porous graphene/carbon composite with a super high surface area.Chemistry-A European Journal, 2014, 20(41): 13314-13320.
|
[9] |
TANG H, WANG J, YIN H, et al.Growth of polypyrrole ultrathin films on MoS2 monolayers as high-performance supercapacitor electrodes.Advanced Materials, 2015, 27(6): 1117-1123.
|
[10] |
GAO P, METZ P, HEY T, et al.The critical role of point defects in improving the specific capacitance of delta-MnO2 nanosheets.Nature Communications, 2017, 8: 14559.
|
[11] |
MENG W, CHEN W, ZHAO L, et al.Porous Fe3O4/carbon composite electrode material prepared from metal-organic framework template and effect of temperature on its capacitance.Nano Energy, 2014, 8: 133-140.
|
[12] |
YANG J, DUAN X, GUO W, et al.Electrochemical performances investigation of NiS/RGO composite as electrode material for supercapacitors.Nano Energy, 2014, 5: 74-81.
|
[13] |
WU J, ZHANG Q, ZHOU A, et al.Phase-separated polyaniline/graphene composite electrodes for high-rate electrochemical supercapacitors.Advanced Materials, 2016, 28(46): 10211-10216.
|
[14] |
LI L, PENG S, CHEN H, et al.Polypyrrole-coated hierarchical porous composites nanoarchitectures for advanced solid-state flexible hybrid devices.Nano Energy, 2016, 19: 307-317.
|
[15] |
COMTE A L, BROUSSE T, BÉLANGER D, et al.. Simpler and greener grafting method for improving the stability of anthraquinone-modified carbon electrode in alkaline media.Electrochimica Acta, 2014, 137: 447-453.
|
[16] |
FRACKOWIAK E, MELLER M, MENZEL J, et al.Redox-active electrolyte for supercapacitor application.Faraday Discussions, 2014, 172: 179-198.
|
[17] |
LI M, DING J, XUE J M.Mesoporous carbon decorated graphene as an efficient electrode material for supercapacitors.Journal of Materials Chemistry A, 2013, 1(25): 7469-7476.
|
[18] |
XU Y X, LIN Z Y, HUANG X Q, et al.Functionalized graphene hydrogel-based high-performance supercapacitors.Advanced Materials, 2013, 25(40): 5779-5784.
|
[19] |
ZHOU J, XING W, ZHUO S, et al.Capacitive performance of ordered mesoporous carbons with tunable porous texture in ionic liquid electrolytes.Solid State Sciences, 2011, 13(11): 2000-2006.
|