Journal of Inorganic Materials ›› 2018, Vol. 33 ›› Issue (1): 19-26.DOI: 10.15541/jim20170146
• Orginal Article • Previous Articles Next Articles
YIN Yue-Yue1, YANG Yong2, ZHANG Liang-Zhu2, LI Yong-Sheng1, MA Yun-Feng2, YANG Li-Li2, HUANG Zheng-Ren2
Received:
2017-03-30
Revised:
2017-06-08
Published:
2018-01-23
Online:
2017-12-15
Supported by:
CLC Number:
YIN Yue-Yue, YANG Yong, ZHANG Liang-Zhu, LI Yong-Sheng, MA Yun-Feng, YANG Li-Li, HUANG Zheng-Ren. Facile Synthesis of Au/Pd Nano-dumbells for Catalytic Reduction of p-Nitrophenol[J]. Journal of Inorganic Materials, 2018, 33(1): 19-26.
Fig. 8 UV-Vis absorption spectra of AuNRs (a), different Au/Pd NDs (b-e) for effective catalytic reduction of p-nitrophenol, ln(C/C0) against time for the determination of rate constant in presence of AuNRs and Au/Pd NDs for effective catalytic reduction of p-nitrophenol (f)
Nature of the catalyts | Size of palladium nanoparticles/nm | Rate constant/min-1 |
---|---|---|
AuNRs | 0 | 0.02 |
AA : Pd=0.10 | 11.4 | 0.16 |
AA : Pd=0.25 | 15.6 | 0.22 |
AA : Pd=0.50 | 20.7 | 0.38 |
AA : Pd=1.00 | 33.6 | 0.18 |
Table 1 Catalytic activity comaprison of AuNRs and Au/Pd NDs for the reduction of 4-nitrophenol
Nature of the catalyts | Size of palladium nanoparticles/nm | Rate constant/min-1 |
---|---|---|
AuNRs | 0 | 0.02 |
AA : Pd=0.10 | 11.4 | 0.16 |
AA : Pd=0.25 | 15.6 | 0.22 |
AA : Pd=0.50 | 20.7 | 0.38 |
AA : Pd=1.00 | 33.6 | 0.18 |
Fig. 9 UV-Vis absorption spectra of Au/Pd NDs for effective catalytic reduction of p-nitrophenol (a-c) and ln (Ct/C0) against time for the determination of rate constant (d)
Nature of the catalyst | Rate constant/min-1 | Concentration of catalyst/(mg·mL-1) | Concentration of 4-NP/(mmol·L-1) | References |
---|---|---|---|---|
Pd supported on TiO2 microspheres | 0.190 | 0.070 | 10.00 | [30] |
Pd on partially reduced graphene oxide | 14.400 | 0.100 | 10.00 | [31] |
Pd immobilized on multiwalled carbon nanotube | 0.014 | 0.250 | 0.06 | [32] |
Pd stabilized by glycodendrimers in water | 0.240 | 0.240 | 0.25 | [33] |
Pd-tipped AuNRs | 0.130 | 0.002 | 0.40 | [17] |
Au/Pd NDs | 0.440 | 0.004 | 10.00 | Current study |
Table 2 Catalytic activity comaprison of Pd based nanoparticle for the reduction of 4-nitrophenol
Nature of the catalyst | Rate constant/min-1 | Concentration of catalyst/(mg·mL-1) | Concentration of 4-NP/(mmol·L-1) | References |
---|---|---|---|---|
Pd supported on TiO2 microspheres | 0.190 | 0.070 | 10.00 | [30] |
Pd on partially reduced graphene oxide | 14.400 | 0.100 | 10.00 | [31] |
Pd immobilized on multiwalled carbon nanotube | 0.014 | 0.250 | 0.06 | [32] |
Pd stabilized by glycodendrimers in water | 0.240 | 0.240 | 0.25 | [33] |
Pd-tipped AuNRs | 0.130 | 0.002 | 0.40 | [17] |
Au/Pd NDs | 0.440 | 0.004 | 10.00 | Current study |
[1] | LIU P, ZHAO M.Silver nanoparticle supported on halloysite nanotubes catalyzed reduction of 4-nitrophenol (4-NP).Applied Surface Science, 2009, 255(7): 3989-3993. |
[2] | EICHENBAUM G, JOHNSON M, KIRKLAND D, et al.Assessment of the genotoxic and carcinogenic risks of p-nitrophenol when it is present as an impurity in a drug product.Regulatory Toxicology and Pharmacology, 2009, 55(1): 33-42. |
[3] | HERVÉS P, PÉREZ-LORENZO M, LIZ-MARZÁN L M, et al. Catalysis by metallic nanoparticles in aqueous solution: model reactions.Chemical Society Reviews, 2012, 41(17): 5577-5587. |
[4] | ZHAO P, FENG X, HUANG D, et al.Basic concepts and recent advances in nitrophenol reduction by gold-and other transition metal nanoparticles.Coordination Chemistry Reviews, 2015, 287: 114-136. |
[5] | ZHAO R, GONG M, ZHU H, et al.Seed-assisted synthesis of Pd@Au core-shell nanotetrapods and their optical and catalytic properties.Nanoscale, 2014, 6(15): 9273-9278. |
[6] | WANG L, YAMAUCHI Y.Strategic synthesis of trimetallic Au@Pd@Pt core-shell nanoparticles from polyvinylpyrrolidone - based aqueous solution toward highly active electrocatalysts.Chemistry of Materials, 2011, 23(9): 2457-2465. |
[7] | HUANG X, WU H, PU S, et al.One-step room-temperature synthesis of Au@Pd core-shell nanoparticles with tunable structure using plant tannin as reductant and stabilizer.Green Chemistry, 2011, 13(4): 950-957. |
[8] | KHANAL B P, ZUBAREV E R.Polymer-functionalized platinum- on-gold bimetallic nanorods.Angewandte Chemie International Edition, 2009, 48(37): 6888-6891. |
[9] | CHANTRY R L, ATANASOV I, SIRIWATCHARAPIBOON W, et al.An atomistic view of the interfacial structures of AuRh and AuPd nanorods.Nanoscale, 2013, 5(16): 7452-7457. |
[10] | CAO Y, YANG Y, SHAN Y, et al.One-pot and facile fabrication of hierarchical branched Pt-Cu nanoparticles as excellent electrocatalysts for direct methanol fuel cell. ACSApplied Materials & Interfaces, 2016, 8(9): 5998-6003. |
[11] | LONG N V, YANG Y, THI C M, et al.The development of mixture, alloy, and core-shell nanocatalysts with nanomaterial supports for energy conversion in low-temperature fuel cells.Nano Energy, 2013, 2(5): 636-676. |
[12] | AN J G, GAO X, JIN J J, et al.Mesoporous zeolite ZSM-5 synthesized via gel conversion with polyethyleneglycol as template and its catalytic performance.Journal of Inorganic Materials, 2015, 30(11): 1148-1154. |
[13] | LV Z Y, FEI Y, CHEN W Y, et al.Hierarchical wheat-like Au-Pd heterostructures with enhanced catalytic activity toward methanol electrooxidation.Journal of Alloys and Compounds, 2013, 581: 717-723. |
[14] | PAUNOVIC V, ORDOMSKY V,D’ANGELO M F N, et al.. Direct synthesis of hydrogen peroxide over Au-Pd catalyst in a wall- coated microchannel.Journal of Catalysis, 2014, 309: 325-332. |
[15] | WU B, LIU D, MUBEEN S, et al.Anisotropic growth of TiO2 onto gold nanorods for plasmon-enhanced hydrogen production from water reduction.Journal of the American Chemical Society, 2016, 138(4): 1114-1117. |
[16] | COSTI R, SAUNDERS A E, ELMALEM E, et al.Visible light-induced charge retention and photocatalysis with hybrid CdSe-Au nanodumbbells.Nano Letters, 2008, 8(2): 637-641. |
[17] | ZHENG Z, TACHIKAWA T, MAJIMA T.Plasmon-enhanced formic acid dehydrogenation using anisotropic Pd-Au nanorods studied at the single-particle level.Journal of the American Chemical Society, 2015, 137(2): 948-957. |
[18] | GARG N, SCHOLL C, MOHANTY A, et al.The role of bromide ions in seeding growth of Au nanorods.Langmuir, 2010, 26(12): 10271-10276. |
[19] | WEITZNER S E, DABO I.Quantum-continuum simulation of underpotential deposition at electrified metal-solution interfaces.npj Computational Materials, 2017, 3: 1, doi: 10.1038/S41524- 016-004-9. |
[20] | YE X, ZHENG C, CHEN J, et al.Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods.Nano Letter, 2013, 13(2): 765-771. |
[21] | JING H, WANG H.Controlled overgrowth of Pd on Au nanorods.CrystEngComm, 2014, 16(40): 9469-9477. |
[22] | PRETZER L A, HECK K N, KIM S S, et al.Improving gold catalysis of nitroarene reduction with surface Pd.Catalysis Today, 2016, 264: 31-36. |
[23] | LINK S, MOHAMED M B, EL-SAYED M A. Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant.Journal of Physical Chemistry B, 1999, 103(16): 3073-3077. |
[24] | ZHANG L, ZHANG J, JIANG Z, et al.Facile syntheses and electrocatalytic properties of porous Pd and its alloy nanospheres.Journal of Materials Chemistry, 2011, 21(26): 9620-9625. |
[25] | SHIN K S, CHOI J Y, PARK C S, et al.Facile synthesis and catalytic application of silver-deposited magnetic nanoparticles.Catalysis Letters, 2009, 133(12): 1-7. |
[26] | PANIGRAHI S, BASU S, PRAHARAJ S,et al.. Synthesis and size-selective catalysis by supported gold nanoparticles: study on heterogeneous and homogeneous catalytic process. Journal of Physical Chemistry C, 2007, 111(12): 4596-4605. |
[27] | OH S D, KIM M R, CHOI S H, et al.Radiolytic synthesis of Pd-M (M= Ag, Au, Cu, Ni and Pt) alloy nanoparticles and their use in reduction of 4-nitrophenol.Journal of Industrial and Engineering Chemistry, 2008, 14(5): 687-692. |
[28] | FENGER R, FERTITTA E, KIRMSE H, et al.Size dependent catalysis with CTAB-stabilized gold nanoparticles.Physical Chemistry Chemical Physics, 2012, 14(26): 9343-9349. |
[29] | CHEN M, KUMAR D, YI C, et al.The promotional effect of gold in catalysis by palladium-gold.Science, 2005, 310(5746): 291-293. |
[30] | JIN Z, XIAO M, BAO Z, et al.A general approach to mesoporous metal oxide microspheres loaded with noble metal nanoparticles.Angewandte Chemie International Edition, 2012, 51(26): 6406-6410. |
[31] | YANG M Q, PAN X, ZHANG N, et al.A facile one-step way to anchor noble metal (Au, Ag, Pd) nanoparticles on a reduced graphene oxide mat with catalytic activity for selective reduction of nitroaromatic compounds.CrystEngComm, 2013, 15(34): 6819-6828. |
[32] | MURUGAN E, VIMALA G.Synthesis, characterization, and catalytic activity for hybrids of multi-walled carbon nanotube and amphiphilic poly (propyleneimine) dendrimer immobilized with silver and palladium nanoparticle.Journal of Colloid and Interface Science, 2013, 396: 101-111. |
[33] | GATARD S, SALMON L, DERAEDT C, et al.Palladium nanoparticles stabilized by glycodendrimers and their application in catalysis.European Journal of Inorganic Chemistry, 2014, 2014(26): 4369-4375. |
[34] | SHAN Y, ZHENG Z, LIU J, et al.Niobium pentoxide: a promising surface-enhanced Raman scattering active semiconductor substrate.npj Computational Materials, 2017, 3: 11, doi: 10.1038/S41524- 017-0008-0. |
[1] | GU Xuesu, YIN Jie, WANG Kanglong, CUI Chong, MEI Hui, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Effect of Particle Grading on Properties of Silicon Carbide Ceramics by Binder Jetting [J]. Journal of Inorganic Materials, 0, (): 216-. |
[2] | CHEN Yu, LIN Pu'an, CAI Bing, ZHANG Wenhua. Research Progress of Inorganic Hole Transport Materials in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 0, (): 105-. |
[3] | TIAN Yubin, TIAN Chaofan, LI Sen, ZHAO Yongxin, XING Tao, LI Zhi, CHEN Xiaoru, XIANG Shuairong, DAI Pengcheng. Biomass-derived High-conductive Carbon Cloth: Preparation and Its Application as Gas Diffusion Layers in Fuel Cells [J]. Journal of Inorganic Materials, 0, (): 127-. |
[4] | JIANG Runlu, WU Xin, GUO Haocheng, ZHENG Qi, WANG Lianjun, JIANG Wan. UiO-67 Based Conductive Composites: Preparation and its Thermoelectric Performance [J]. Journal of Inorganic Materials, 0, (): 197-. |
[5] | LI Haiyan, KUANG Fenghua, WU Haolong, LIU Xiaogen, BAO Yiwang, WAN Detian. Temperature Dependence of Residual Tensile Stresses and its Influences on Crack Propagation Behaviour [J]. Journal of Inorganic Materials, 0, (): 214-. |
[6] | FANG Wanli, SHEN Lili, LI Haiyan, CHEN Xinyu, CHEN Zongqi, SHOU Chunhui, ZHAO Bin, YANG Songwang. Effect of Film Formation Processes of NiOx Mesoporous Layer on Performance of Perovskite Solar Cells with Carbon Electrodes [J]. Journal of Inorganic Materials, 0, (): 2-. |
[7] | DING Tongshun, FENG Ping, SUN Xuewen, SHAN Husheng, LI Qi, SONG Jian. Perovskite Film Passivated by Fmoc-FF-OH and Its Photovoltaic Performance [J]. Journal of Inorganic Materials, 0, (): 50-. |
[8] | XU Hao, QIAN Wei, HUA Yinqun, YE Yunxia, DAI Fengze, CAI Jie. Effects of Micro Texture Processed by Picosecond Laser on Hydrophobicity of Silicon Carbide [J]. Journal of Inorganic Materials, 0, (): 73-. |
[9] | QIU Haiyang, MIAO Guangtan, LI Hui, LUAN Qi, LIU Guoxia, SHAN Fukai. Effect of Plasma Treatment on the Long-term Plasticity of Synaptic Transistor [J]. Journal of Inorganic Materials, 2023, 38(4): 406-412. |
[10] | DU Jianyu, GE Chen. Recent Progress in Optoelectronic Artificial Synapse Devices [J]. Journal of Inorganic Materials, 2023, 38(4): 378-386. |
[11] | YANG Yang, CUI Hangyuan, ZHU Ying, WAN Changjin, WAN Qing. Research Progress of Flexible Neuromorphic Transistors [J]. Journal of Inorganic Materials, 2023, 38(4): 367-377. |
[12] | WU Junlin, DING Jiyang, HUANG Xinyou, ZHU Danyang, HUANG Dong, DAI Zhengfa, YANG Wenqin, JIANG Xingfen, ZHOU Jianrong, SUN Zhijia, LI Jiang. Fabrication and Microstructure of Gd2O2S:Tb Scintillation Ceramics from Water-bath Synthesized Nano-powders: Influence of H2SO4/Gd2O3 Molar Ratio [J]. Journal of Inorganic Materials, 2023, 38(4): 452-460. |
[13] | CHEN Xinli, LI Yan, WANG Weisheng, SHI Zhiwen, ZHU Liqiang. Gelatin/Carboxylated Chitosan Gated Oxide Neuromorphic Transistor [J]. Journal of Inorganic Materials, 2023, 38(4): 421-428. |
[14] | YOU Junqi, LI Ce, YANG Dongliang, SUN Linfeng. Double Dielectric Layer Metal-oxide Memristor: Design and Applications [J]. Journal of Inorganic Materials, 2023, 38(4): 387-398. |
[15] | FANG Renrui, REN Kuan, GUO Zeyu, XU Han, ZHANG Woyu, WANG Fei, ZHANG Peiwen, LI Yue, SHANG Dashan. Associative Learning with Oxide-based Electrolyte-gated Transistor Synapses [J]. Journal of Inorganic Materials, 2023, 38(4): 399-405. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||