Journal of Inorganic Materials ›› 2017, Vol. 32 ›› Issue (11): 1209-1214.DOI: 10.15541/jim20170021
• RESEARCH PAPER • Previous Articles Next Articles
TANG Xiao-Hua, LI Hui, YANG Ai-Mei, ZHA Fei, CHANG Yue
Received:
2017-01-10
Revised:
2017-03-31
Published:
2017-11-20
Online:
2017-10-20
CLC Number:
TANG Xiao-Hua, LI Hui, YANG Ai-Mei, ZHA Fei, CHANG Yue. Imidazole and Nickel (II) Modified SAPO-34 and Its Catalytic Activity in CO2 Hydrogenation to Ethylene[J]. Journal of Inorganic Materials, 2017, 32(11): 1209-1214.
Catalyst | Specific surface/ (m2•g-1) | Pore volume/ (cm3•g-1) | Pore diameter/ nm |
---|---|---|---|
SAPO-34M | 530.0 | 0.36 | 0.20 |
SAPO-34S | 526.9 | 0.34 | 0.22 |
SAPO-34P | 520.2 | 0.31 | 0.26 |
SAPO-34T | 511.8 | 0.29 | 0.29 |
SAPO-34R | 506.3 | 0.28 | 0.30 |
SAPO-34N | 471.4 | 0.27 | 0.38 |
Table 1 Surface area, pore volume and pore diameter of SAPO-34X
Catalyst | Specific surface/ (m2•g-1) | Pore volume/ (cm3•g-1) | Pore diameter/ nm |
---|---|---|---|
SAPO-34M | 530.0 | 0.36 | 0.20 |
SAPO-34S | 526.9 | 0.34 | 0.22 |
SAPO-34P | 520.2 | 0.31 | 0.26 |
SAPO-34T | 511.8 | 0.29 | 0.29 |
SAPO-34R | 506.3 | 0.28 | 0.30 |
SAPO-34N | 471.4 | 0.27 | 0.38 |
Catalyst | CO2 conversion/% | Selectivity/% | |||||
---|---|---|---|---|---|---|---|
CH4 | C2H4 | C2H6 | C3H6 | C4H8 | CO | ||
CZA/SAPO-34 | 52.6 | 13.2 | 52.8 | 1.00 | 10.5 | 0.07 | 22.4 |
CZA/SAPO-34M | 53.4 | 12.2 | 53.5 | 0.12 | 9.6 | 0.08 | 24.5 |
CZA/SAPO-34S | 69.0 | 12.7 | 58.2 | 0.10 | 9.2 | 0.10 | 19.9 |
CZA/SAPO-34P | 73.8 | 8.1 | 67.7 | 0.06 | 6.3 | 0.10 | 17.8 |
CZA/SAPO-34T | 72.7 | 9.2 | 66.4 | 0.30 | 6.6 | 0.10 | 17.5 |
CZA/SAPO-34R | 71.8 | 9.8 | 65.2 | 0.50 | 6.8 | 0.10 | 17.6 |
CZA/SAPO-34N | 71.1 | 9.9 | 64.3 | 0.90 | 7.0 | 0.16 | 17.6 |
Table 2 Catalytic performance of CZA/SAPO-34X
Catalyst | CO2 conversion/% | Selectivity/% | |||||
---|---|---|---|---|---|---|---|
CH4 | C2H4 | C2H6 | C3H6 | C4H8 | CO | ||
CZA/SAPO-34 | 52.6 | 13.2 | 52.8 | 1.00 | 10.5 | 0.07 | 22.4 |
CZA/SAPO-34M | 53.4 | 12.2 | 53.5 | 0.12 | 9.6 | 0.08 | 24.5 |
CZA/SAPO-34S | 69.0 | 12.7 | 58.2 | 0.10 | 9.2 | 0.10 | 19.9 |
CZA/SAPO-34P | 73.8 | 8.1 | 67.7 | 0.06 | 6.3 | 0.10 | 17.8 |
CZA/SAPO-34T | 72.7 | 9.2 | 66.4 | 0.30 | 6.6 | 0.10 | 17.5 |
CZA/SAPO-34R | 71.8 | 9.8 | 65.2 | 0.50 | 6.8 | 0.10 | 17.6 |
CZA/SAPO-34N | 71.1 | 9.9 | 64.3 | 0.90 | 7.0 | 0.16 | 17.6 |
[1] | SITTICHAI N, LEKSE J W, BALTRUS J P,et al. Active sites and structure-activity relationships of copper-based catalysts for carbon dioxide hydrogenation to methanol. ACS Catal., 2012, 2(8): 1667-1676. |
[2] | LIU X M, LU G Q, YAN Z F,et al. Recent advances in catalysts for methanol synthesis via hydrogenation of CO and CO2. Ind. Eng. Chem. Res., 2003, 42(25): 6518-6530. |
[3] | GAYUBO A G, VICENTE J, ERE A J, et al. Causes of deactivation of bifunctional catalysts made up of CuO-ZnO-Al2O3 and desilicated HZSM-5 zeolite in DME steam reforming.Appal. Catal. A-Gen., 2014, 483: 76-84. |
[4] | DUBOIS D R, OBRZUT D L, LIU J,et al. Conversion of methanol to olefins over cobalt-, manganese- and nickel-incorporated SAPO-34 molecular sieves. Fuel Proces. Technol., 2003, 83(1/2/3): 203-218. |
[5] | JABBARI Z, FATEMI S, DAVOODPOUR M.Improvement of SAPO-34 fine layer formation on ceramic and steel supports by applying uniform-size synthesized seed particles. Asia-Pac J.Chem. Eng., 2013, 8(2): 301-310. |
[6] | SLOCZYNSKI J, GRABOWSKI R, OLSZEWSKI P, et al. Effect of metal oxide additives on the activity and stability of Cu/ZnO/ ZrO2 catalysts in the synthesis of methanol from CO2 and H2.Appal. Catal. A-Gen., 2006, 310: 127-137. |
[7] | YOU ZHENYA, DENG WEIPING, ZHANG QINGHONG,et al. Hydrogenation of carbon dioxide to light olefins over non-supported iron catalyst. Chinese J. Catal., 2013, 34(5): 956-963. |
HIRSA M, TORRES G, KRIGE P,et al. Catalysts for production of lower olefins from synthesis gas: a review. ACS Catal., 2013, 3(9): 2130-2149. | |
[8] | NISHIYAMA N, ICHIOKA K, PARK D H,et al. Reactant-selective hydrogenation over composite silicalite-1-coated Pt/TiO2 particles. Ind. Eng. Chem. Res., 2004, 43(5): 1211-1215. |
[9] | PARK J W, SEO G.IR study on methanol-to-olefin reaction over zeolites with different pore structures and acidities.Appl. Catal. A-Gen., 2009, 356(2): 180-188. |
[10] | CHEN D, REBO H P, MOLJORD K,et al. Influence of coke deposition on selectivity in zeolite catalysis. Ind. Eng. Chem. Res., 1997, 36(9): 3473-3479. |
[11] | TAN JUAN, LIU ZHONGMIN, BAO XINHE,et al. Crystallization and Si incorporation mechanisms of SAPO-34. Micropor. Mesopor. Mat., 2002, 53(1/2/3): 97-108. |
[12] | MISOOK K.Methanol conversion on metal-incorporated SAPO- 34s (MeAPSO-34s).J. Mole. Catal. A. 2000, 160(2): 437-444. |
[13] | SALMASI M, FATEMI S, TAHERI NAJAFABADI A.Improvement of light olefins selectivity and catalyst lifetime in MTO reaction; using Ni and Mg-modified SAPO-34 synthesized by combination of two templates.J. Ind. Eng. Chem., 2011, 17(4): 755-761. |
[14] | CORMA L, NEMETH T, RENZ M,et al. Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer-viliger oxidations. Nature, 2001, 412: 423-425. |
[15] | GARSUCH O, KLEPEL R, SATTLER R, et al. Synthesis of a carbon replica of zeolite Y with large crystallite size.Carbon, 2006, 44(1): 593-596. |
[16] | WANG K, CAO G KENNEDY G J, et al. Pore modification of H-SAPO-34 using dialkyl zinc: structural characterization and reaction pathway. J. Phys. Chem. C, 2011, 115(38): 18611-18617. |
[17] | TIAN HAIFENG, YANG AIMEI, ZHA FEI,et al. Preparation of imidazole-modified HZSM-5 zeolite and its application in the catalytic synthesis of dimethyl ether from hydrogenation of carbon dioxide. Fine Chem., 2014, 31(2): 186-192. |
[18] | ZHAO YANQIAO, CHEN JIXIANG, ZHANG JIYAN.Effects of precipitation temperature on performance of the catalyst for dimethyl ether synthesis from carbon dioxide hydrogenation.Chem. React. Eng. Technol., 2007, 23(5): 456-461. |
[19] | EREN J, GARON R, ARANDES J M, et al. Effect of operating conditions on the synthesis of dimethyl ether over a CuO-ZnO- Al2O3/NaHZSM-5 bifunctional catalyst. Catal. Today#/magtechI#. Effect of operating conditions on the synthesis of dimethyl ether over a CuO-ZnO- Al2O3/NaHZSM-5 bifunctional catalyst. Catal. Today, 2005, 107- 108: 467-473. |
[20] | LIU ZHIJIAN, LIAO JIANJUN, TAN JINGPIN,et al. A method for evaluating the activity of CO2 hydrogenation catalyst for methanol synthesis. Chemical Engineering of Oil and Gas, 2000, 29(5): 268-271. |
[21] | DAI W L, WANG X, WU G J,et al. Methanol-to-olefin conversion on silicoaluminophosphate catalysts: effect of bronsted acid sites and framework structures. ACS Catal., 2011, 1(4): 292-299. |
[22] | JAROMIEC M, SOLOVYOV L A.Improvement of the kruk-jaroniec- sayar method for pore size analysis of ordered silicas with cylindrical mesopores.Langmuir, 2006, 22: 6757-6760. |
[23] | POP G, BOZGA G, GANEA R,et al. Methanol conversion to dimethyl ether over H-SAPO-34 catalyst. Ind. Eng. Chem. Res., 2009, 48(15): 7065-7071. |
[24] | BAEK S C, LEE Y J, JUN K W,et al. Influence of catalytic functionalities of zeolites on product selectivities in methanol conversion. Energy Fuel, 2009, 23(2): 593-598. |
[25] | FUJIWARA M, SAKURAI H, SHIOKAWA K,et al. Synthesis of C2+ hydrocarbons by CO2 hydrogenation over the composite catalyst of Cu-Zn-Al oxide and HB zeolite using two-stage reactor system under low pressure. Catal. Today, 2015, 242: 255-260. |
[26] | QI GUOZHEN, XIE ZAIKU, YANG WEIMIN,et al. Kinetic modeling of coke formation on SAPO-34 catalyst in the transformation of methanol to olefins. Journal of Fuel Chemistry & Technology, 2006, 34(2): 205-208. |
[1] | MA Xiaosen, ZHANG Lichen, LIU Yanchao, WANG Quanhua, ZHENG Jiajun, LI Ruifeng. 13X@SiO2: Synthesis and Toluene Adsorption [J]. Journal of Inorganic Materials, 2023, 38(5): 537-543. |
[2] | CHI Congcong, QU Panpan, REN Chaonan, XU Xin, BAI Feifei, ZHANG Danjie. Preparation of SiO2@Ag@SiO2@TiO2 Core-shell Structure and Its Photocatalytic Degradation Property [J]. Journal of Inorganic Materials, 2022, 37(7): 750-756. |
[3] | JIAO Boxin, LIU Xingchong, QUAN Ziwei, PENG Yongshan, ZHOU Ruonan, LI Haimin. Performance of Perovskite solar cells Doped with L-arginine [J]. Journal of Inorganic Materials, 2022, 37(6): 669-675. |
[4] | XIAO Meixia, LI Miaomiao, SONG Erhong, SONG Haiyang, LI Zhao, BI Jiaying. Halogenated Ti3C2 MXene as High Capacity Electrode Material for Li-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(6): 660-668. |
[5] | DONG Shurui, ZHAO Di, ZHAO Jing, JIN Wanqin. Effect of Ionized Amino Acid on the Water-selective Permeation through Graphene Oxide Membrane in Pervaporation Process [J]. Journal of Inorganic Materials, 2022, 37(4): 387-394. |
[6] | ZHOU Ganghuai, LIU Yao, SHI Yuan, LIU Shaojun. Slurry Preparation and Stereolithography for Activated Alumina Catalyst Carrier [J]. Journal of Inorganic Materials, 2022, 37(3): 297-302. |
[7] | ZHOU Fan, BI Hui, HUANG Fuqiang. Ultra-large Specific Surface Area Activated Carbon Synthesized from Rice Husk with High Adsorption Capacity for Methylene Blue [J]. Journal of Inorganic Materials, 2021, 36(8): 893-903. |
[8] | FU Yukun, ZENG Min, RAO Xianfa, ZHONG Shengwen, ZHANG Huijuan, YAO Wenli. Microwave-assisted Synthesis and Co, Al Co-modification of Ni-rich LiNi0.8Mn0.2O2 Materials for Li-ion Battery Electrode [J]. Journal of Inorganic Materials, 2021, 36(7): 718-724. |
[9] | LIANG Fengqing, WEN Zhaoyin. MOF/Poly(Ethylene Oxide) Composite Polymer Electrolyte for Solid-state Lithium Battery [J]. Journal of Inorganic Materials, 2021, 36(3): 332-336. |
[10] | LIU Qiang, DING Jie, JI Guojing, HU Juanmin, GU Hao, ZHONG Qin. Fe-Co-K/ZrO2 Catalytic Performance of CO2 Hydrogenation to Light Olefins [J]. Journal of Inorganic Materials, 2021, 36(10): 1053-1058. |
[11] | ZHANG Dongqiang, LU Huihui, SU Na, LI Guixian, JI Dong, ZHAO Xinhong. Modulation of SAPO-34 Property with Activated Seeds and Its Enhanced Lifetime in Methanol to Olefins Reaction [J]. Journal of Inorganic Materials, 2021, 36(1): 101-106. |
[12] | DONG Shaojie,WANG Xudong,SHEN Steve Guofang,WANG Xiaohong,LIN Kaili. Research Progress on Functional Modifications and Applications of Bioceramic Scaffolds [J]. Journal of Inorganic Materials, 2020, 35(8): 867-881. |
[13] | HUANG Xiubing, WANG Peng, TAO Jinzhang, XI Zuoshuai. CeO2 Modified Mn-Fe-O Composites and their Catalytic Performance for NH3-SCR of NO [J]. Journal of Inorganic Materials, 2020, 35(5): 573-580. |
[14] | JI Bang, ZHAO Wenfeng, DUAN Jieli, MA Lizhe, FU Lanhui, YANG Zhou. Synthesis of TiO2/WO3 on Nickel Foam for the Photocatalytic Degradation of Ethylene [J]. Journal of Inorganic Materials, 2020, 35(5): 581-588. |
[15] | CHEN Jun,MA Pei-Hua,ZHANG Cheng,Laurent RUHLMANN,LYU Yao-Kang. Preparation and Electrochemical Property of New Multifunctional Inorganic/Organic Composite Film [J]. Journal of Inorganic Materials, 2020, 35(2): 217-223. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||