Journal of Inorganic Materials ›› 2017, Vol. 32 ›› Issue (11): 1141-1146.DOI: 10.15541/jim20170012
• RESEARCH PAPER • Previous Articles Next Articles
ZUO Ya-Zhuo, LI Hong, WANG Shao-Lei, YANG Min, REN Mu-Su, SUN Jin-Liang
Received:
2017-01-06
Revised:
2017-03-21
Published:
2017-11-20
Online:
2017-10-20
CLC Number:
ZUO Ya-Zhuo, LI Hong, WANG Shao-Lei, YANG Min, REN Mu-Su, SUN Jin-Liang. Ablation Behavior of (C-SiC)f/C Composites[J]. Journal of Inorganic Materials, 2017, 32(11): 1141-1146.
Sample | Structure | Density/ (g•cm-3) | Open porosity | Mass fraction of SiC/% |
---|---|---|---|---|
(C-SiC)f/C | CF felt/ SiCF felt | 1.80 | 8.0% | 5%-6% |
C/C | CF felt | 1.80 | 5.1% | 0 |
Table 1 Basic parameters of (C-SiC)f/C and C/C composites
Sample | Structure | Density/ (g•cm-3) | Open porosity | Mass fraction of SiC/% |
---|---|---|---|---|
(C-SiC)f/C | CF felt/ SiCF felt | 1.80 | 8.0% | 5%-6% |
C/C | CF felt | 1.80 | 5.1% | 0 |
Samples | Ablation time/s | Linear ablation rate/(μm·s-1) | Mass ablation rate/(mg·s-1) |
---|---|---|---|
(C-SiC)f/C | 750 | 1.88 | 2.16 |
C/C | 750 | 5.29 | 8.14 |
Table 2 Linear and mass ablation rates of (C-SiC)f/C and C/C
Samples | Ablation time/s | Linear ablation rate/(μm·s-1) | Mass ablation rate/(mg·s-1) |
---|---|---|---|
(C-SiC)f/C | 750 | 1.88 | 2.16 |
C/C | 750 | 5.29 | 8.14 |
Fig. 8 SEM images and EDS spectrum (insert) of ablation marginal zone at different places in (C-SiC)f/C composites (a) Near the transitional zone; (b) Edge of the marginal zone
No. | Reaction |
---|---|
1 | SiC(s) → SiC(l) |
2 | 2/3SiC(s) + O2(g) → 2/3SiO2(s) + 2/3CO(g) 2/3SiC(s) + O2(g) → 2/3SiO2(l) + 2/3CO(g) 2/3SiC(l) + O2(g) → 2/3SiO2(g) + 2/3CO(g) |
3 | 1/2SiC(s) + O2(g) → 1/2SiO2(s) + 1/2CO2(g) 1/2SiC(s) + O2(g) → 1/2SiO2(l) + 1/2CO2(g) 1/2SiC(l) + O2(g) → 1/2SiO2(g) + 1/2CO2(g) |
4 | SiC(s) + O2(g) → SiO(g) + CO(g) |
5 | 2/3SiC(s) + O2(g) → 2/3SiO(g) + 2/3CO2(g) |
6 | SiO2(l) → SiO2(g) |
7 | SiO2(l) + CO(g) → SiO(g) + CO2(g) |
8 | SiO2(l) + C(s) → SiO(g) + CO(g) |
9 | 1/3SiO2(l) + C → 1/3SiC(s) + 2/3CO(g) 1/3SiO2(g) + C → 1/3SiC(s) + 2/3CO(g) 1/3SiO2(g) + C → 1/3SiC(l) + 2/3CO(g) |
10 | 1/2SiO2(l) + C → 1/2SiC(s) + 1/2CO2(g) 1/2SiO2(g) + C → 1/2SiC(s) + 1/2CO2(g) 1/2SiO2(g) + C → 1/2SiC(l) + 1/2CO2(g) |
11 | SiC(s) + 2SiO2(l) → 3SiO(g) + CO SiC(l) + 2SiO2(g) → 3SiO(g) + CO |
12 | C(s) + O2(g) → CO2(g) |
13 | 2C(s) + O2(g) → 2CO(g) |
14 | C(s) + H2O(g) → CO(g) + H2(g) |
Table 3 Main reactions occured in thermo-chemical ablation process
No. | Reaction |
---|---|
1 | SiC(s) → SiC(l) |
2 | 2/3SiC(s) + O2(g) → 2/3SiO2(s) + 2/3CO(g) 2/3SiC(s) + O2(g) → 2/3SiO2(l) + 2/3CO(g) 2/3SiC(l) + O2(g) → 2/3SiO2(g) + 2/3CO(g) |
3 | 1/2SiC(s) + O2(g) → 1/2SiO2(s) + 1/2CO2(g) 1/2SiC(s) + O2(g) → 1/2SiO2(l) + 1/2CO2(g) 1/2SiC(l) + O2(g) → 1/2SiO2(g) + 1/2CO2(g) |
4 | SiC(s) + O2(g) → SiO(g) + CO(g) |
5 | 2/3SiC(s) + O2(g) → 2/3SiO(g) + 2/3CO2(g) |
6 | SiO2(l) → SiO2(g) |
7 | SiO2(l) + CO(g) → SiO(g) + CO2(g) |
8 | SiO2(l) + C(s) → SiO(g) + CO(g) |
9 | 1/3SiO2(l) + C → 1/3SiC(s) + 2/3CO(g) 1/3SiO2(g) + C → 1/3SiC(s) + 2/3CO(g) 1/3SiO2(g) + C → 1/3SiC(l) + 2/3CO(g) |
10 | 1/2SiO2(l) + C → 1/2SiC(s) + 1/2CO2(g) 1/2SiO2(g) + C → 1/2SiC(s) + 1/2CO2(g) 1/2SiO2(g) + C → 1/2SiC(l) + 1/2CO2(g) |
11 | SiC(s) + 2SiO2(l) → 3SiO(g) + CO SiC(l) + 2SiO2(g) → 3SiO(g) + CO |
12 | C(s) + O2(g) → CO2(g) |
13 | 2C(s) + O2(g) → 2CO(g) |
14 | C(s) + H2O(g) → CO(g) + H2(g) |
[1] | LI H J.C/C composites.New Carbon Materials, 2001, 16(2): 79-80. |
[2] | WINDHORSE T, DLOUNT G. C/C composites: a summary of recent developments and application. Materials and Design#/magtechI#, 1997, 18(1): 11-15. |
[3] | WANG Y, CHEN Z F, YU S J, et al. Ablation behavior . Ablation behavior and mechanism analysis of C/SiC composites. Journal of Materials Research and Technology#/magtechI#, 2016, 5(2): 170-182. |
[4] | WANG Y, XU Y D, WANG Y G,et al. Effects of TaC addition on the ablation resistance of C/SiC. Materials Letters, 2010, 64(19): 2068-2071. |
[5] | XUE L, SU Z A, YANG X, et al. Microstructure. Microstructure and ablation behavior of C/C-HfC composites prepared by precursor infiltration and pyrolysis.Corrosion Science, 2015, 94(5): 165-170. |
[6] | LI K Z, XIE J, LI H J, et al. Ablative. Ablative and mechanical properties of C/C-ZrC composites prepared by precursor infiltration and pyrolysis process. Journal of Materials Science & Technology#/magtechI#, 2015, 31(1): 77-82. |
[7] | LIU L, LI H J, HAO K, et al. Effect of SiC location on the ablation of C/C-SiC composites in two heat fluxes. Journal of Materials Science & Technology#/magtechI #. Effect of SiC location on the ablation of C/C-SiC composites in two heat fluxes. Journal of Materials Science & Technology, 2015, 31(4): 345-354. |
[8] | CUI Y Y, LI A J, LI B, et al. Microstructure. Microstructure and ablation mechanism of C/C-SiC composites. Journal of the European Ceramic Society#/magtechI#, 2014, 34(2): 171-177. |
[9] | WEI L F, LI K Z, WU F, et al. Preparation. Preparation and ablation properties of SiC modified C/C Composites. Journal of the Chinese Ceramic Society#/magtechI#, 2011, 39(2): 251-255. |
[10] | YANG X, HU H F, ZHANG Y D, et al. Thermal shock properties of 3D-C/SiC composites prepared via polymer infiltration pyrolysis. Thermal shock properties of 3D-C/SiC composites prepared via polymer infiltration pyrolysis (PIP). Ceramics International , 2014, 40(7): 9087-9094. |
[11] | ZHANG Z, HAO Z B, YAN L S. Preparation methods and application of C/C-SiC composites. Carbon#/magtechI#, 2008, 2: 29-35. |
[12] | WEN S Q, LI K Z, SONG Q, et al. Enhancement of the oxidation resistance of C/C composites by depositing SiC nanowires onto carbon fibers by electrophoretic deposition. Journal of Alloys. Enhancement of the oxidation resistance of C/C composites by depositing SiC nanowires onto carbon fibers by electrophoretic deposition. Journal of Alloys and Compounds#/magtechI#, 2015, 618(1): 336-342. |
[13] | YANG X, HUANG Q Z, SU Z A, et al. Ablative property. Ablative property and mechanism of C/C-ZrB2-ZrC-SiC composites reinforced by SiC networks under plasma flame. Corrosion Science#/magtechI#, 2016, 107(6): 9-20. |
[14] | TOSHIHIRO I, HIROSHI O. Defect control of SiC polycrystalline fiber synthesized from poly-aluminocarbosilane. Journal of the European Ceramic Society#/magtechI#, 2016, 36(15): 3657-3662. |
[15] | FONG C X, XUE J G, SONG Y C. The progress of research on silicon carbide fiber.Hi-Tech Fiber & Application#/magtechI#, 2003, 28(1): 15-19. |
[16] | 实用化学手册编写组. 实用化学手册. 北京: 科学出版社, 2001. |
[1] | WU Shuang, GOU Yanzi, WANG Yongshou, SONG Quzhi, ZHANG Qingyu, WANG Yingde. Effect of Heat Treatment on Composition, Microstructure and Mechanical Property of Domestic KD-SA SiC Fibers [J]. Journal of Inorganic Materials, 2023, 38(5): 569-576. |
[2] | WANG Yuanjie, PEI Xueliang, LI Haoyi, XU Xin, HE Liu, HUANG Zhengren, HUANG Qing. Crosslinking of Active Polycarbosilane Initiated by Free Radical and Its Application in the Preparation of SiC Fibers [J]. Journal of Inorganic Materials, 2021, 36(9): 967-973. |
[3] | WANG Xi,WANG Kejie,BAI Hui,SONG Zhuolin,WANG Bo,ZHANG Chengyu. Creep Properties and Damage Mechanisms of 2D-SiCf/SiC Composites Prepared by CVI [J]. Journal of Inorganic Materials, 2020, 35(7): 817-821. |
[4] | WANG Pengren, GOU Yanzi, WANG Hao. Third Generation SiC Fibers for Nuclear Applications [J]. Journal of Inorganic Materials, 2020, 35(5): 525-531. |
[5] | Han-Qing YU, Zhi-Jun DONG, Guan-Ming YUAN, Ye CONG, Xuan-Ke LI, Yong-Ming LUO. Boron-carbon doped Silicon Carbide Fibers: Preparation and Property [J]. Journal of Inorganic Materials, 2019, 34(5): 493-501. |
[6] | WANG Guo-Dong, SONG Yong-Cai. Enhancing Mechanical Property of SiC Fiber by Decreasing Fiber Diameter through a Modified Melt-spinning Process [J]. Journal of Inorganic Materials, 2018, 33(7): 721-727. |
[7] | SHI Xu-Guo, LI Ming-Yuan, MA Wei-Gang, ZHOU Xin-Gui, ZHANG Xing. Experimental Study on Thermal Transport Property of KD-II SiC Fiber [J]. Journal of Inorganic Materials, 2018, 33(7): 756-760. |
[8] | MU Yang, DENG Jia-Xin, LI Hao, ZHOU Wan-Cheng. Comparison of High-temperature Dielectric and Microwave Absorbing Property of Two Continuous SiC Fibers [J]. Journal of Inorganic Materials, 2018, 33(4): 427-433. |
[9] | CAO Shi-Yi, WANG Jun, WANG Hao, WANG Xiao-Zhou. Influence of Free Carbon Elimination on Microstructure and Property of SiC Fibers [J]. Journal of Inorganic Materials, 2016, 31(5): 529-534. |
[10] | YUAN Qin, SONG Yong-Cai. Research and Development of Continuous SiC Fibers and SiCf/SiC Composities [J]. Journal of Inorganic Materials, 2016, 31(11): 1157-1165. |
[11] | YUAN Wen-Yu, CHENG Lai-Fei,WU Heng, LIU Yong-Sheng. Effect of Silicon Source on Biomorphic SiC Fibers Converted from Natural Fibers [J]. Journal of Inorganic Materials, 2015, 30(2): 159-164. |
[12] | ZHANG Rong-Jun, YANG Yan-Qing, SHEN Wen-Tao. Preparation and Tensile Test of SiC Fiber Fabricated by Three-stage Chemical Vapor Deposition [J]. Journal of Inorganic Materials, 2010, 25(8): 840-844. |
[13] | LIU Xu-Guang,WANG Ying-De,WANG Lei,XUE Jin-Gen,LAN Xin-Yan. Preparation and Microwave Electromagnetic Properties of Cross-shaped SiC Fibers [J]. Journal of Inorganic Materials, 2010, 25(4): 441-444. |
[14] | ZHANG Rong-Jun, YANG Yan-Qing, WANG Chen, SHEN Wen-Tao, LUO Xian. Microstructure of SiC Fiber Fabricated by Three-stage Chemical Vapor Deposition [J]. Journal of Inorganic Materials, 2010, 25(12): 1281-1285. |
[15] | ZHAO Da-Fang,WANG Hai-Zhe,LI Xiao-Dong. Development of Polymer-Derived SiC Fiber [J]. Journal of Inorganic Materials, 2009, 24(6): 1097-1104. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||