Journal of Inorganic Materials ›› 2017, Vol. 32 ›› Issue (10): 1055-1062.DOI: 10.15541/jim20160677
• Orginal Article • Previous Articles Next Articles
CHANG Xi-Wang1, CHEN Ning2, WANG Li-Jun3, LI Fu-Shen2, BIAN Liu-Zhen1, CHOU Kuo-Chih1
Received:
2016-12-12
Revised:
2017-02-08
Published:
2017-10-20
Online:
2017-09-21
About author:
CHANG Xi-Wang. E-mail: changxiwang2006@126.com
CLC Number:
CHANG Xi-Wang, CHEN Ning, WANG Li-Jun, LI Fu-Shen, BIAN Liu-Zhen, CHOU Kuo-Chih. Optimal Principle on Composition of B Site Elements in Perovskite Electrodes with Sr at A Site for Solid Oxide Fuel Cell[J]. Journal of Inorganic Materials, 2017, 32(10): 1055-1062.
Fig. 1 Diagram for the binary oxides reaction to form cubic or hexagonal perovskitesAll of models calculated in this work has been showed above, including SrO, each binary oxide of B site elements, cubic perovskites, and hexagonal perovskites
Fig. 2 Structure stability tendency diagramThe color in the main graph that changed from red to blue represents that ion radius changed from large to small; the color in the inserted graph that changed from red to blue represents that ion valance states changed from high to low
Composition | Cathode/ Anode | Electrolyte/ Anode (Cathode) | Cell Supporting Part | Conductivity (S•cm-1)/ Temperature(℃) | Power density (mW·cm-2) /Temperature(℃) |
---|---|---|---|---|---|
SrCo0.7Fe0.2Nb0.1O3-δ[ | Cathode | SDC*/NiO-SDC | Electrolyte | 304/350 | 630/800 |
SrCo0.7Fe0.2Nb0.1O3-δ[ | Cathode | SDC/NiO-SDC | Anode | 1587/600 | |
SrCo0.8Sc0.2O3-δ[ | Cathode | SDC/NiO-SDC | Anode | 902/600 | |
SrCo0.9Nb0.1O3-δ[ | Cathode | LSGM*/NiO-SDC | Electrolyte | 462.7/300 | 678/800 |
SrCo0.9Nb0.1O3-δ[ | Cathode | LSGM/NiO-SDC | Electrolyte | 50/850 | 600/850 |
SrCo0.95Ti0.05O3-δ[ | Cathode | LSGM/SMF* | Electrolyte | 398/350 | 824/850 |
SrCo0.97V0.03O3-δ[ | Cathode | LSGM/SMF | Electrolyte | 8/850 | 550/850 |
SrCo0.95Sn0.05O3-δ[ | Cathode | SDC/NiO-SDC | Anode | 545/550 | 847/700 |
SrCo0.7Fe0.2Ta0.1O3-δ[ | Cathode | LSGM/NiO-SDC | Electrolyte | 249.4/350 | 652.9/800 |
SrCo0.95Sb0.05O3-δ | Cathode | LSGM/SMM* | Electrolyte | 500/400[ | 618/850[ |
SrCo0.9Ta0.1O3-δ[ | Cathode | - | 471/325 | ||
SrFe0.95Ti0.05O3-δ[ | Cathode | LSGM/NiO-SDC | Electrolyte | 72/650 | 605/800 |
SrFe0.75Cr0.25O3-δ[ | Symmetry Electrode | - | 22/600 | ||
SrFe0.7Cu0.3O3-δ[ | Cathode | - | 54/800 | ||
SrFe0.9Nb0.1O3-δ[ | Cathode | SDC/NiO-SDC | Electrolyte | 104.4/450 | 407/800 |
SrFe0.75Zr0.25O3-δ[ | Symmetry Electrode | LSGM | Electrolyte | 11.2/650 | 425/800 |
SrFe0.75Mo0.25O3-δ | Symmetry Electrode | LSGM | Electrolyte | 23.8/650[ | 970/800[ |
SrMo0.9Fe0.1O3-δ[ | Anode | LSGM/SCF* | Electrolyte | 305/50 | 874/850 |
SrMo0.9Co0.1O3-δ[ | Anode | LSGM/SCF | Electrolyte | 386/50 | 793/850 |
SrMo0.9Cr0.1O3-δ[ | Anode | LSGM/SCF | Electrolyte | 365/50 | 755/850 |
SrTi0.8Nb0.2O3-δ[ | Anode | LSGM/LSCF* | Electrolyte | 794/850 | |
SrFe0.8Ta0.2O3-δ[ | Cathode | - | 25.9/700 | ||
SrFe0.9W0.1O3-δ[ | Anode | - | 60.4/700 |
Table 1 Compositions of SrBO3 perovskite and their related performance data
Composition | Cathode/ Anode | Electrolyte/ Anode (Cathode) | Cell Supporting Part | Conductivity (S•cm-1)/ Temperature(℃) | Power density (mW·cm-2) /Temperature(℃) |
---|---|---|---|---|---|
SrCo0.7Fe0.2Nb0.1O3-δ[ | Cathode | SDC*/NiO-SDC | Electrolyte | 304/350 | 630/800 |
SrCo0.7Fe0.2Nb0.1O3-δ[ | Cathode | SDC/NiO-SDC | Anode | 1587/600 | |
SrCo0.8Sc0.2O3-δ[ | Cathode | SDC/NiO-SDC | Anode | 902/600 | |
SrCo0.9Nb0.1O3-δ[ | Cathode | LSGM*/NiO-SDC | Electrolyte | 462.7/300 | 678/800 |
SrCo0.9Nb0.1O3-δ[ | Cathode | LSGM/NiO-SDC | Electrolyte | 50/850 | 600/850 |
SrCo0.95Ti0.05O3-δ[ | Cathode | LSGM/SMF* | Electrolyte | 398/350 | 824/850 |
SrCo0.97V0.03O3-δ[ | Cathode | LSGM/SMF | Electrolyte | 8/850 | 550/850 |
SrCo0.95Sn0.05O3-δ[ | Cathode | SDC/NiO-SDC | Anode | 545/550 | 847/700 |
SrCo0.7Fe0.2Ta0.1O3-δ[ | Cathode | LSGM/NiO-SDC | Electrolyte | 249.4/350 | 652.9/800 |
SrCo0.95Sb0.05O3-δ | Cathode | LSGM/SMM* | Electrolyte | 500/400[ | 618/850[ |
SrCo0.9Ta0.1O3-δ[ | Cathode | - | 471/325 | ||
SrFe0.95Ti0.05O3-δ[ | Cathode | LSGM/NiO-SDC | Electrolyte | 72/650 | 605/800 |
SrFe0.75Cr0.25O3-δ[ | Symmetry Electrode | - | 22/600 | ||
SrFe0.7Cu0.3O3-δ[ | Cathode | - | 54/800 | ||
SrFe0.9Nb0.1O3-δ[ | Cathode | SDC/NiO-SDC | Electrolyte | 104.4/450 | 407/800 |
SrFe0.75Zr0.25O3-δ[ | Symmetry Electrode | LSGM | Electrolyte | 11.2/650 | 425/800 |
SrFe0.75Mo0.25O3-δ | Symmetry Electrode | LSGM | Electrolyte | 23.8/650[ | 970/800[ |
SrMo0.9Fe0.1O3-δ[ | Anode | LSGM/SCF* | Electrolyte | 305/50 | 874/850 |
SrMo0.9Co0.1O3-δ[ | Anode | LSGM/SCF | Electrolyte | 386/50 | 793/850 |
SrMo0.9Cr0.1O3-δ[ | Anode | LSGM/SCF | Electrolyte | 365/50 | 755/850 |
SrTi0.8Nb0.2O3-δ[ | Anode | LSGM/LSCF* | Electrolyte | 794/850 | |
SrFe0.8Ta0.2O3-δ[ | Cathode | - | 25.9/700 | ||
SrFe0.9W0.1O3-δ[ | Anode | - | 60.4/700 |
Fig. 3 Relationship between stability and experience data1: SrTi0.8Nb0.2O3-δ; 2: SrMo0.98Ni0.02O3-δ; 3: SrMo0.9Fe0.1O3-δ; 4: SrMo0.9Cr0.1O3-δ; 5: SrMo0.9Co0.1O3-δ; 6: SrFe0.75Zr0.25O3-δ; 7: SrFe0.75 Mo0.25O3-δ; 8: SrFe0.8Ta0.2O3-δ; 9: SrFe0.9W0.1O3-δ; 10: SrFe0.9Al0.1O3-δ; 11: SrFeO2.5+δ; 12: SrFe0.9Sc0.1O3-δ; 13: SrFe0.7Cu0.3O3-δ; 14: SrCo0.7Fe0.2 Nb0.1O3-δ; 15: Sr0.9Ce0.1Co0.9Nb0.1O3-δ; 16: SrCo0.95Nb0.05O3-δ; Color distribution for the amount of compositions reported in references
Fig. 4 Oxygen vacancy forming and ion migrating energy changing tendency based on structure stability(a) Vacancy forming energy; (b) Ion migrating energy
[1] | SHANNON R D, PREWITT C T.Effective Ionic radii in oxides and fluorides.Acta Crystallogr. Sect. B: Struct. Sci., 1969, 25(5): 925-946. |
[2] | MUÑOZ-GARCÍA A B, RITZMANN A M, PAVONE M, et al. Oxygen transport in perovskite-type solid oxide fuel cell materials: insights from quantum mechanics.Acc. Chem. Res., 2014, 47(11): 3340-3348. |
[3] | CHEN Y, ZHOU W, DING D, et al.Advances in cathode materials for solid oxide fuel cells: complex oxides without alkaline earth metal elements.Adv. Energy Mater., 2015, 5(18): 1500537. |
[4] | MASTRIKOV Y A, MERKLE R, KOTOMIN E A, et al.Formation and migration of oxygen vacancies in La1-xSrxCo1-yFeyO3-δ perovskites: insight from ab initio calculations and comparison with Ba1-xSrxCo1-yFeyO3-δ.Phys. Chem. Chem. Phys., 2013, 15(3): 911-918. |
[5] | KOTOMIN E A, MERKLE R, MASTRIKOV Y A, et al.First principles modeling of oxygen mobility in perovskite SOFC cathode and oxygen permeation membrane materials.Electrochem. Soc. Trans., 2011, 35(1): 823-830. |
[6] | DENG Z, YANG W, LIU W, et al.Relationship between transport properties and phase transformations in mixed-conducting oxides.J. Solid State Chem., 2006, 179(2): 362-369. |
[7] | NAGAI T, ITO W, SAKON T.Relationship between cation substitution and stability of perovskite structure in SrCoO3-δ-based mixed conductors.Solid State Ionics, 2007, 177(39/40): 3433-3444. |
[8] | FERNÁNDEZ-ROPERO A J, PORRAS-VÁZQUEZ J M, CABEZA A, et al. High valence transition metal doped strontium ferrites for electrode materials in symmetrical SOFCs.J. Power Sources, 2014, 249: 405-413. |
[9] | BLENNOW P, HANSEN K K, WALLENBERG L R, et al.Electrochemical characterization and redox behavior of Nb-doped SrTiO3.Solid State Ionics, 2009, 180(1): 63-70. |
[10] | LI M, ZHOU W, ZHU Z.Recent development on perovskite-type cathode materials based on SrCoO3-δ parent oxide for intermediatetemperature solid oxide fuel cells.Asia-Pac. J. Chem. Eng., 2016, 11(3): 370-381. |
[11] | XIAO G, LIU Q, WANG S, et al.Synthesis and characterization of Mo-doped SrFeO3-δ as cathode materials for solid oxide fuel cells.J. Power Sources, 2012, 202: 63-69. |
[12] | NAGAI I, SHIRAKAWA N, IKEDA S, et al.Highest conductivity oxide SrMoO3 grown by a floating-zone method under ultralow oxygen partial pressure.Appl. Phys. Lett., 2005, 87(2): 024105. |
[13] | LI NA, CHEN NING, LI FUSHEN, et al.Theoretical research on optimization ingredient regulation of BaBO3 series hypoxic materials.Scientia Sinica Phys, Mech & Astron, 2011, 41(9): 1075-1079. |
[14] | REN YUMEI, CHEN NING, ZHAO HAILEI, et al.Theoretical research on optimization dopant regulation of La2BO4 series mixed conductor materials.J. Inorg. Mater., 2013, 28(8): 841-846. |
[15] | CHANG XIWANG, CHEN NING, WANG LIJUN, et al.Optimization rule of anode materials for solid oxide fuel cells.J. Inorg. Mater., 2015, 30(10): 1043-1048. |
[16] | ZHAO JICHENG, A perspective on the materials genome initiative.Chin. J. Nat., 2014, 36(2): 89-104. |
[17] | PERDEW J P, BURKE K, ERNZERHOF M.Generalized gradient approximation made simple.Phys. Rev. Lett., 1996, 77(18): 3865-3868. |
[18] | VANDERBILT D.Soft self-consistent pseudopotentials in a generalized eigenvalue formalism.Physical. Review. B, 1990, 41(11): 7892-7895. |
[19] | YOON J S, YI E J, CHOI B H, et al.Methane oxidation behavior over La0.08Sr0.92Fe0.20Ti0.80O3-δ perovskite oxide for SOFC anode.Ceram. Int., 2014, 40(1): 1525-1529. |
[20] | AGUADERO A, PEREZ-COLL D, ALONSO J A, et al.A new family of Mo-doped SrCoO3-δ perovskites for application in reversible solid state electrochemical cells.Chem. Mater., 2012, 24(14): 2655-2663. |
[21] | ZHANG J, XIE K, WEI H, et al.In situ formation of oxygen vacancy in perovskite Sr0.95Ti0.8Nb0.1M0.1O3 (M=Mn, Cr) toward efficient carbon dioxide electrolysis.Sci. Rep., 2014, 4: 7082. |
[22] | CASCOS V, MARTÍNEZ-CORONADO R, ALONSO J A. New Nb-doped SrCo1-xNbxO3-δ perovskites performing as cathodes in solid-oxide fuel cells.Int. J. Hydrogen Energy, 2014, 39(26): 14349-14354. |
[23] | MARKOV A A, SHALAEVA E V, TYUTYUNNIK A P, et al.Structural features and enhanced high-temperature oxygen ion transport in SrFe1-xTaxO3-δ.J. Solid State Chem., 2013, 197: 191-197. |
[24] | ZHANG H, WANG T, DONG X, et al.Preparation and oxygen permeation properties of SrFe(Cu)O3-δ dense ceramic membranes.J. Nat. Gas Chem., 2009, 18(1): 45-49. |
[25] | LEONIDOVA I A, PATRAKEEVA M V, BAHTEEVAA J A, et al.Oxygen-ion and electron conductivity in Sr2(Fe1-xGax)2O5.J. Solid State Chem., 2006, 179(10): 3045-3051. |
[26] | LONG Y, KANEKO Y, ISHIWATA S, et al.Synthesis of cubic SrCoO3 single crystal and its anisotropic magnetic and transport properties.J. Phys.: Condens. Matter, 2011, 23(24): 245601. |
[27] | SØNDENÅ R, RAVINDRAN P, STØLEN S, et al. Electronic structure and magnetic properties of cubic and hexagonal SrMnO3.Phys. Rev. B, 2006, 74(14): 144102. |
[28] | HODGES J P, SHORT S, JORGENSEN J D, et al.Evolution of oxygen-vacancy ordered crystal structures in the perovskite series SrnFenO3n-1(n=2, 4, 8, and ∞), and the Relationship to electronic and magnetic properties.J. Solid State Chem., 2000, 151(2): 190-209. |
[29] | MARKOV A A, LEONIDOV I A, PATRAKEEV M V, et al.Structural stability and electrical transport in SrFe1-xMoxO3-δ.Solid State Ionics, 2008, 179(21-26): 1050-1053. |
[30] | ARÉVALO-LÓPEZ A M, RODGERS J A, SENN M S, et al. “hard-soft” synthesis of SrCrO3-δ superstructure phases.Angew. Chem. Int. Ed., 2012, 51(43): 10791-10794. |
[31] | LÜ S, YU B, MENG X, et al.Characterization of SrCo0.7Fe0.2Nb0.1O3-δ cathode materials for intermediate-temperature solid oxide fuel cells.J. Power Sources, 2015, 273: 244-254. |
[32] | ZHU Y, SUNARSO J, ZHOU W, et al.High-performance SrNb0.1Co0.9-xFexO3-δ perovskite cathodes for low-temperature solid oxide fuel cells.J. Mater. Chem. A, 2014, 2: 15454-15462. |
[33] | ZHOU W., SHAO Z., RAN R., et al.Novel SrSc0.2Co0.8O3-δ as a cathode material for low temperature solid-oxide fuel cell.Electrochem. Commun., 2008, 10(10): 1647-1651. |
[34] | WANG F, ZHOU Q, HE T, et al.Novel SrCo1-yNbyO3-δ cathode for intermediate-temperature solid oxide fuel cells.J. Power Sources, 2010, 195(12): 3772-3778. |
[35] | CASCOS V, TRONCOSO L, ALONSO J A.New families of Mn+-doped SrCo1-xMxO3-δ perovskites performing as cathodes in solid-oxide fuel cells.Int. J. Hydrogen Energy, 2015, 40(34): 11333-11341. |
[36] | WANG S, HSU Y F, YEH C T, et al.Characteristic of SrCo1-xSnxO3-δ cathode materials for use in solid oxide fuel cells.Solid State Ionics, 2012, 227: 10-16. |
[37] | QU B, LONG W, JIN F, et al.SrCo0.7Fe0.2Ta0.1O3-δ perovskite as a cathode material for intermediate-temperature solid oxide fuel cells.Int. J. Hydrogen Energy, 2014, 39(23): 12074-12082. |
[38] | AGUADERO A, PÉREZ-COLL D, CALLE C D L, et al. SrCo1-xSbxO3-δ perovskite oxides as cathode materials in solid oxide fuel cells.J. Power Sources, 2009, 192(1): 132-137. |
[39] | AGUADERO A, ALONSO J A, PÉREZ-COLL D, et al. SrCo0.95Sb0.05O3-δ as cathode material for high power density solid oxide fuel cells.Chem. Mater., 2010, 22(3): 789-798. |
[40] | ZHOU Q, WEI T, SHI Y, et al.Evaluation and optimization of SrCo0.9Ta0.1O3-δ perovskite as cathodes for solid oxide fuel cell.Curr. Appl. Phys., 2012, 12(4): 1092-1095. |
[41] | YU X, LONG W, JIN F, et al.Cobalt-free perovskite cathode materials SrFe1-xTixO3-δ and performance optimization for intermediate-temperature solid oxide fuel cells.Electrochim. Acta, 2014, 123: 426-434. |
[42] | LI Q, XIA T, SUN L, et al.Electrochemical performance of novel cobalt-free perovskite SrFe0.7Cu0.3O3-δ cathode for intermediate temperature solid oxide fuel cells.Electrochim. Acta, 2014, 150: 151-156. |
[43] | ZHOU Q, ZHANG L, HE T.Cobalt-free cathode material SrFe0.9Nb0.1O3-δ for intermediate-temperature solid oxide fuel cells.Electrochem. Commun., 2010, 12(2): 285-287. |
[44] | SANTOS-GÓMEZ L D, COMPANA J M, BRUQUE S, et al. Symmetric electrodes for solid oxide fuel cells based on Zr-doped SrFeO3-δ.J. Power Sources, 2015, 279: 419-427. |
[45] | MENG X, LIU X, HAN D, et al.Symmetrical solid oxide fuel cells with impregnated SrFe0.75Mo0.25O3-δ electrodes.J. Power Sources, 2014, 252: 58-63. |
[46] | MARTÍNERZ-CORONADO R, ALONSO J A, AGUADERO A, et al. Optimized energy conversion efficiency in solid-oxide fuel cells implementing SrMo1-xFexO3-δ perovskites as anodes.J. Power Sources, 2012, 208: 153-158. |
[47] | MARTÍNERZ-CORONADO R, ALONSO J A, FERNÁNDEZ-DÍAZ M T. SrMo0.9Co0.1O3-δ: A potential anode for intermediate-temperature solid-oxide fuel cells (IT-SOFC).J. Power Sources, 2014, 258: 76-82. |
[48] | MARTÍNERZ-CORONADO R, ALONSO J A, AGUADERO A, et al. New SrMo1-xCrxO3-δ perovskites as anodes in solid-oxide fuel cells.Int. J. Hydrogen Energy, 2014, 39(8): 4067-4073. |
[49] | XIAO G, WANG S, LIN Y, et al.Releasing metal catalysts via phase transition: (NiO)0.05-(SrTi0.8Nb0.2O3)0.95 as a redox stable anode material for solid oxide fuel cells.Appl. Mater. Interfaces, 2014, 6(22): 19990-19996. |
[50] | SHALAEVA E V, PATRAKEEV M V, MARKOV A A, et al.Ion transport in dual-phase SrFe1-xТаxO3-δ (x=0.03-0.10): effects of redox cycling.J. Solid State Electrochem., 2015, 19(3): 841-849. |
[51] | MARKOV A A, PATRAKEEV M V, SAVINSKAYA O A, et al.Oxygen nonstoichiometry and high-temperature transport in SrFe1-xWxO3-δ.Solid State Ionics, 2008, 179(1-6): 99-103. |
[52] | LI X, ZHAO H, SHEN W, et al.Synthesis and properties of Y-doped SrTiO3 as an anode material for SOFCs.J. Power Sources, 2007, 166(1): 47-52. |
[53] | LEE K J, IGUCHI E.Electronic properties of SrMnO3-x.J. Solid State Chem., 1995, 114(1): 242-248. |
[54] | MACCHESNEY J B, SHERWOOD R C, POTTER J F.Electric and magnetic properties of the strontium ferrates.J. Chem. Phys., 1965, 43(6): 1907-1913. |
[55] | HOFFMANN M, BORISOV V S, OSTANIN S, et al.Magnetic properties of defect-free and oxygen-deficient cubic SrCoO3-δ.Phys. Rev. B, 2015, 92(9): 094427. |
[1] | GUO Tianmin, DONG Jiangbo, CHEN Zhengpeng, RAO Mumin, LI Mingfei, LI Tian, LING Yihan. Enhanced Compatibility and Activity of High-entropy Double Perovskite Cathode Material for IT-SOFC [J]. Journal of Inorganic Materials, 2023, 38(6): 693-700. |
[2] | FAN Shuai, JIN Tian, ZHANG Shanlin, LUO Xiaotao, LI Chengxin, LI Changjiu. Effect of Li2O Sintering Aid on Sintering Characteristics and Electrical Conductivity of LSGM Electrolyte for Solid Oxide Fuel Cell [J]. Journal of Inorganic Materials, 2022, 37(10): 1087-1092. |
[3] | CAO Dan,ZHOU Mingyang,LIU Zhijun,YAN Xiaomin,LIU Jiang. Fabrication and Characterization of Anode-supported Solid Oxide Fuel Cell Based on Proton Conductor Electrolyte [J]. Journal of Inorganic Materials, 2020, 35(9): 1047-1052. |
[4] | XIA Tian, MENG Xie, LUO Ting, ZHAN Zhongliang. La 3+-substituted Sr2Fe1.5Ni0.1Mo0.4O6-δ as Anodes for Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2020, 35(5): 617-622. |
[5] | Kai LI, Xiao LI, Jian LI, Jia-Miao XIE. Structural Stability of Ni-Fe Supported Solid Oxide Fuel Cells Based on Stress Analysis [J]. Journal of Inorganic Materials, 2019, 34(6): 611-617. |
[6] | Wei WANG, Li-Li YUAN, Qian-Yuan QIU, Ming-Yang ZHOU, Mei-Lin LIU, Jiang LIU. A Direct Carbon Solid Oxide Fuel Cell Stack Based on a Single Electrolyte Plate Fabricated by Tape Casting Technique [J]. Journal of Inorganic Materials, 2019, 34(5): 509-514. |
[7] | XIA Tian, MENG Xie, LUO Ting, ZHAN Zhong-Liang. Synthesis and Evaluation of Ca-doped Sr2Fe1.5Mo0.5O6-δ as Symmetrical Electrodes for High Performance Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2019, 34(10): 1109-1114. |
[8] | XU Hong-Mei, ZHANG Hua, LI Heng, JIAN Yao-Yong, XIE Wu, WANG Yi-Ping, XU Ming-Ze. Preparation and Oxygen-reduction Mechanism Investigation of Nanostructure LSCF-SDC Composite Cathodes [J]. Journal of Inorganic Materials, 2017, 32(4): 379-385. |
[9] | XIE Jia-Miao, WANG Feng-Hui. Thermal Stress Analysis of Solid Oxide Fuel Cell with Anode Functional Layer [J]. Journal of Inorganic Materials, 2017, 32(4): 400-406. |
[10] | YANG Yang, TIAN Dong, DING Yan-Zhi, LU Xiao-Yong, LIN Bin, CHEN Yong-Hong. Improved Performance of Symmetrical Solid Oxide Fuel Cells with Redox-reversible Pr0.6Sr0.4Co0.2Fe0.8O3-δ Electrodes [J]. Journal of Inorganic Materials, 2017, 32(3): 235-240. |
[11] | CHENG Liang, LUO Ling-Hong, SHI Ji-Jun, SUN Liang-Liang, XU Xu, WU Ye-Fan, HU Jia-Xing. Ni/YSZ Anode Impregnated La2O3 on Anti-carbon Deposition of SOFC Cell [J]. Journal of Inorganic Materials, 2017, 32(3): 241-246. |
[12] | LUO Ling-Hong, LIN You-Cheng, SHI Ji-Jun, CHENG Liang, WU Ye-Fan, SUN Liang-Liang. Preparation and Properties of Three-phase Composite Cathode of LSCF-GDC Dipped LSM Sol [J]. Journal of Inorganic Materials, 2016, 31(7): 756-760. |
[13] | ZHOU Yu-Cun, YE Xiao-Feng, WANG Shao-Rong. All Symmetrical Metal Supported Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2016, 31(7): 769-772. |
[14] | YANG Zhi-Bin, ZHU Teng-Long, XIANG Wen-Long, YU Li-An, HAN Min-Fang. Sintering Behavior and Electrical Conductivity of Gd0.1Ce0.9O1.95 with Li2O Additives [J]. Journal of Inorganic Materials, 2015, 30(4): 345-350. |
[15] |
YANG Xiao-Long, TU Heng-Yong, YU Qing-Chun.
Fabrication and Property of Co3O4 and La0.6Sr0.4CoO3-δ Dual Layer Coatings on SUS430 Steel [J]. Journal of Inorganic Materials, 2015, 30(4): 379-384. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||