Journal of Inorganic Materials ›› 2017, Vol. 32 ›› Issue (9): 909-915.DOI: 10.15541/jim20160655
• Orginal Article • Previous Articles Next Articles
LI Jun, CAO Ya-Li, WANG Lu-Xiang, JIA Dian-Zeng
Received:
2016-11-25
Revised:
2017-02-22
Published:
2017-09-30
Online:
2017-08-29
About author:
LI Jun. E-mail: Junli107@163.com
Supported by:
CLC Number:
LI Jun, CAO Ya-Li, WANG Lu-Xiang, JIA Dian-Zeng. Performance of Coal-derived Spherical Porous Carbon as Anode Materials for Lithium Ion Batterie[J]. Journal of Inorganic Materials, 2017, 32(9): 909-915.
Sample | SBET /(m2·g-1) | VBJH /(cm3·g-1) | Vmicro /(cm3·g-1) | (Vmicro/Vt)/% |
---|---|---|---|---|
CSC | 117.17 | 0.35 | 0.01 | 3.48 |
CSPC-1 | 442.81 | 0.40 | 0.07 | 17.44 |
CSPC-2 | 464.18 | 0.44 | 0.08 | 18.05 |
CSPC-3 | 534.83 | 0.37 | 0.12 | 31.83 |
CSPC-4 | 810.42 | 1.33 | 0.31 | 23.30 |
Table 1 The pore structure parameters of CSC and CSPC-n
Sample | SBET /(m2·g-1) | VBJH /(cm3·g-1) | Vmicro /(cm3·g-1) | (Vmicro/Vt)/% |
---|---|---|---|---|
CSC | 117.17 | 0.35 | 0.01 | 3.48 |
CSPC-1 | 442.81 | 0.40 | 0.07 | 17.44 |
CSPC-2 | 464.18 | 0.44 | 0.08 | 18.05 |
CSPC-3 | 534.83 | 0.37 | 0.12 | 31.83 |
CSPC-4 | 810.42 | 1.33 | 0.31 | 23.30 |
Sample | First specific discharge capacity /(mAh·g-1) | First specific charge capacity /(mAh·g-1) | First coulombic efficiency/% | Second specific discharge capacity /(mAh·g-1) | Second specific charge capacity /(mAh·g-1) | Second coulombic efficiency/% | The 20th specific discharge capacity /(mAh·g-1) | The 20th specific charge capacity /(mAh·g-1) |
---|---|---|---|---|---|---|---|---|
CSC | 426.4 | 174.0 | 40.8 | 193.9 | 158.4 | 81.7 | 151.2 | 175.5 |
CSPC-1 | 817.8 | 355.9 | 43.5 | 361.1 | 322.3 | 89.2 | 306.7 | 576.0 |
CSPC-2 | 802.4 | 348.9 | 43.5 | 350.4 | 313.6 | 89.5 | 307.7 | 587.7 |
CSPC-3 | 1188.9 | 497.5 | 41.8 | 535.2 | 471.6 | 88.1 | 398.4 | 844.9 |
CSPC-4 | 600.2 | 244.1 | 40.7 | 240.4 | 215.6 | 89.7 | 194.0 | 327.1 |
Table 2 Charge/discharge capacity and the efficiency of the CSPC-n electrodes
Sample | First specific discharge capacity /(mAh·g-1) | First specific charge capacity /(mAh·g-1) | First coulombic efficiency/% | Second specific discharge capacity /(mAh·g-1) | Second specific charge capacity /(mAh·g-1) | Second coulombic efficiency/% | The 20th specific discharge capacity /(mAh·g-1) | The 20th specific charge capacity /(mAh·g-1) |
---|---|---|---|---|---|---|---|---|
CSC | 426.4 | 174.0 | 40.8 | 193.9 | 158.4 | 81.7 | 151.2 | 175.5 |
CSPC-1 | 817.8 | 355.9 | 43.5 | 361.1 | 322.3 | 89.2 | 306.7 | 576.0 |
CSPC-2 | 802.4 | 348.9 | 43.5 | 350.4 | 313.6 | 89.5 | 307.7 | 587.7 |
CSPC-3 | 1188.9 | 497.5 | 41.8 | 535.2 | 471.6 | 88.1 | 398.4 | 844.9 |
CSPC-4 | 600.2 | 244.1 | 40.7 | 240.4 | 215.6 | 89.7 | 194.0 | 327.1 |
[1] | TARASCON J M, ARMAND M.Issues and challenges facing rechargeable lithium batterie.Nature, 2001, 414: 359-367. |
[2] | WU Y P, MA J Q, DAI X B, et al.Lithium Ion Batteries: Practice Applications. Chemical Industry Press, Beijing, 2004. |
[3] | SU L, JING Y, ZHOU Z.Li ion battery materials with core-shell nanostructure.Nanoscale, 2011, 3(10): 3967-3983. |
[4] | ROBERTS A D, LI X, ZHANG H F.Porous carbon spheres and monoliths: morphology control, pore size tuning and their applications as Li-ion battery anode material. Chem. Soc. Rev., 2014, 43(34): 4341-4356. |
[5] | JIN Y Z, GAO C, HSU W K,et al. Large-scale synthesis and characterization of carbon spheres prepared by direct pyrolysis of hydrocarbon. Carbon, 2005, 43(9): 1944-1953. |
[6] | LI M, LI W, LIU S X.Hydrothermal synthesis, characterization, and KOH activation of carbon spheres from glucos.Carbohydr. Res., 2011, 346(8): 999-1004. |
[7] | TIEN B, XU M, LIU J.Synthesis and electrochemical characterization of carbon spheres as anode material for lithium-ion batter.Mater. Lett., 2010, 64(13): 1465-1467. |
[8] | CHOI M, RYOO R.Mesoporous carbons with KOH activated framework and their hydrogen adsorptio.J. Mater. Chem., 2007, 17(39): 4204-4309. |
[9] | ZHU Y, MURALI S, STOLLER M D,et al. Carbon-based supercapacitors produced by activation of graphen. Science, 2011, 332(6037): 1537-1541. |
[10] | CHANG B, SHI W, GUAN D,et al. Hollow porous carbon sphere prepared by a facile activation method and its rapid phenol remova. Mater. Lett., 2014, 126(126): 13-16. |
[11] | LI W J, YU Z Y, XIE F,et al. Preparation and characterization of spherical mesoporous material SBA-15 in the presence of H3PO4. Mater. Sci. Forum, 2011, 694: 804-808. |
[12] | WU X, WANG L X, JIA D Z.Controllable preparation of carbon nanotubes from xinjiang coa.Chinese J. Inorg. Chem., 2013, 29(9): 1842-1848. |
[13] | DRESSELHAUS M S, DRESSELHAUS G, SAITO R,et al. Raman spectroscopy of carbon nanotube. Phys. Rep., 2005, 409(2): 47-99. |
[14] | KONNDOU S, ISHIKAWA T, ABE I.Franslated by LI G X. Adsorption Science. Chemical Industry Press, Beijing, 2006. |
[15] | WANG S X, YANG L, STUBBS L P,et al. Lignin-derived fused electrospun carbon fibrous mats as high performance anode materials for lithium ion batterie. ACS Appl. Mater. Interfaces, 2013, 5(23): 12275-12282. |
[16] | QIAN C, GUO P, ZHANG X,et al. Nitrogen-doped mesoporous hollow carbon nanoflowers as high performance anode materials of lithium ion batterie. RSC Adv., 2016, 6: 93519-93524. |
[17] | ZHONG C, WANG J Z, WESLER D,et al. Microwave autoclave synthesized multi-layer graphene/single-walled carbon nanotube composites for free-standing lithium-ion battery anodes. Carbon, 2014, 66: 637-645. |
[18] | CHEN Y M, LI X Y, PARK K.Hollow carbon-nanotube/carbon- nanofiber hybrid anodes for Li-ion batterie.J. Am. Chem. Soc., 2013, 135(44): 16280-16283. |
[19] | WU P, DU N, ZHANG H,et al. Carbon nanocapsules as nanoreactors for controllable synthesis of encapsulated iron and iron oxides: magnetic properties and reversible lithium storag. J. Phy. Chem. C, 2011, 115(9): 3612-3620. |
[20] | LI X N, ZHU X B, ZHU Y C,et al. Porous nitrogen-doped carbon vegetable-sponges with enhanced lithium storage performanc. Carbon, 2014, 69(2): 515-524. |
[21] | TANG J J, YANG J, ZHOU X Y, Synthesis and characterisation of sponge-like carbon anode materials for lithium ion batterie.Mater. Lett., 2013, 109(15): 253-256. |
[22] | SAIKIA D, WANG T H, CHOU C J,et al. A comparative study of ordered mesoporous carbons with different pore structures as anode materials for lithium-ion batteries. RSC Adv., 2015, 5(53): 42922-42930. |
[23] | NITIN A K, JOACHIM M.Lithium storage in carbon nanostructure.Adv. Mater., 2009, 21(25/26): 2664-2680. |
[24] | GAN L, GUO H J, WANG Z X,et al. A facile synthesis of graphite/silicon/graphene spherical composite anode for lithium-ion batterie. Electrochim. Acta., 2013, 104(8): 117-123. |
[25] | CHANG Y C, SOHN H J.Electrochemical impedance analysis for lithium ion intercalation into graphitized carbon.J. Electrochem. Soc., 2000, 147: 50-58. |
[26] | XING Z, JU Z C, ZHAO Y L,et al. One-pot hydrothermal synthesis of nitrogen-doped graphene as high-performance anode materials for lithium ion batterie. Sci. Rep., 2016, 6: 26146. |
[27] | WU Y P, WAN C R, JIANG C Y,et al. Mechanism of lithium storage in low temperature carbo. Carbon, 1999, 37: 1901-1908. |
[1] | SU Nana, HAN Jingru, GUO Yinhao, WANG Chenyu, SHI Wenhua, WU Liang, HU Zhiyi, LIU Jing, LI Yu, SU Baolian. ZIF-8-derived Three-dimensional Silicon-carbon Network Composite for High-performance Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(9): 1016-1022. |
[2] | SU Dongliang, CUI Jin, ZHAI Pengbo, GUO Xiangxin. Mechanism Study on Garnet-type Li6.4La3Zr1.4Ta0.6O12 Regulating the Solid Electrolyte Interphases of Si/C Anodes [J]. Journal of Inorganic Materials, 2022, 37(7): 802-808. |
[3] | XIAO Meixia, LI Miaomiao, SONG Erhong, SONG Haiyang, LI Zhao, BI Jiaying. Halogenated Ti3C2 MXene as High Capacity Electrode Material for Li-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(6): 660-668. |
[4] | WANG Yutong, ZHANG Feifan, XU Naicai, WANG Chunxia, CUI Lishan, HUANG Guoyong. Research Progress of LiTi2(PO4)3 Anode for Aqueous Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(5): 481-492. |
[5] | WANG Jing, XU Shoudong, LU Zhonghua, ZHAO Zhuangzhuang, CHEN Liang, ZHANG Ding, GUO Chunli. Hollow-structured CoSe2/C Anode Materials: Preparation and Sodium Storage Properties for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(12): 1344-1350. |
[6] | LI Kunru, HU Xinghui, ZHANG Zhengfu, GUO Yuzhong, HUANG Ruian. Three-dimensional Porous Biogenic Si/C Composite for High Performance Lithium-ion Battery Anode Derived from Equisetum Fluviatile [J]. Journal of Inorganic Materials, 2021, 36(9): 929-935. |
[7] | WANG Ying, ZHANG Wenlong, XING Yanfeng, CAO suqun, DAI Xinyi, LI Jingze. Performance of Amorphous Lithium Phosphate Coated Lithium Titanate Electrodes in Extended Working Range of 0.01-3.00 V [J]. Journal of Inorganic Materials, 2021, 36(9): 999-1005. |
[8] | LI Rui,WANG Hao,FU Qiang,TIAN Ziyu,WANG Jianxu,MA Xiaojian,YANG Jian,QIAN Yitai. Stable Li-metal Depositon on Lithiophilic 3D CuO Nanosheet-decorated Cu Mesh [J]. Journal of Inorganic Materials, 2020, 35(8): 882-888. |
[9] | ZHAN Jing,XU Changfan,LONG Yiyu,LI Qihou. Bi2Mn4O10: Preparation by Polyacrylamide Gel Method and Electrochemical Performance [J]. Journal of Inorganic Materials, 2020, 35(7): 827-833. |
[10] | XIA Tian, MENG Xie, LUO Ting, ZHAN Zhongliang. La 3+-substituted Sr2Fe1.5Ni0.1Mo0.4O6-δ as Anodes for Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2020, 35(5): 617-622. |
[11] | ZHU Zeyang,WEI Jishi,HUANG Jianhang,DONG Xiangyang,ZHANG Peng,XIONG Huanming. Preparation of ZnO Nanorods with Lattice Vacancies and Their Application in Ni-Zn Battery [J]. Journal of Inorganic Materials, 2020, 35(4): 423-430. |
[12] | ZHENG Shiyou, DONG Fei, PANG Yuepeng, HAN Pan, YANG Junhe. Research Progress on Nanostructured Metal Oxides as Anode Materials for Li-ion Battery [J]. Journal of Inorganic Materials, 2020, 35(12): 1295-1306. |
[13] | GUO Si-Lin, KANG Shuai, LU Wen-Qiang. Ge Nanoparticles in MXene Sheets: One-step Synthesis and Highly Improved Electrochemical Property in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2020, 35(1): 105-111. |
[14] | Yi TAN, Kai WANG. Silicon-based Anode Materials Applied in High Specific Energy Lithium-ion Batteries: a Review [J]. Journal of Inorganic Materials, 2019, 34(4): 349-357. |
[15] | Xiao-Jing FENG, Gong-Kai WANG, Xiao-Ran WANG, Jun HE, Xin WANG, Hui-Fen PENG. Electrochemical Property of Cr 3+ Doped LiSn2(PO4)3 Anode Material [J]. Journal of Inorganic Materials, 2019, 34(4): 358-364. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||