Journal of Inorganic Materials ›› 2017, Vol. 32 ›› Issue (9): 897-903.DOI: 10.15541/jim20160651
• Orginal Article • Next Articles
ZHAI Chun-Yang1, SUN Ming-Juan1, DU Yu-Kou2, ZHU Ming-Shan1
Received:
2016-11-25
Revised:
2017-01-05
Published:
2017-09-30
Online:
2017-08-29
About author:
ZHAI Chun-Yang. E-mail: zhaichunyang@nbu.edu.cn
Supported by:
CLC Number:
ZHAI Chun-Yang, SUN Ming-Juan, DU Yu-Kou, ZHU Ming-Shan. Noble Metal/Semiconductor Photoactivated Electrodes for Direct Methanol Fuel Cel[J]. Journal of Inorganic Materials, 2017, 32(9): 897-903.
[1] | ANDÚJAR J M, SEGURA F. Fuel cells: History and updating. A walk along two centurie.Energy Reviews, 2009, 13: 2309-2322. |
[2] | SHARMA S, POLLET B G.Support materials for PEMFC and DMFC electrocatalysts—a revie.J. Power Sources, 2012, 208(15): 96-119. |
[3] | CAO M N, WU D S, CAO R.Recent advances in the stabilization of platinum electrocatalysts for fuel-cell reaction.ChemCatChem, 2014, 6: 26-45. |
[4] | ARICÒ A S, SRINIVASAN S, ANTONUCCI V.DMFCs: from fundamental aspects to technology developmen.Fuel Cells, 2001, 1: 133-161. |
[5] | WANG, Z H, SHI G Y, XIA J F,et al.Research progress on Pt-based anode catalysts in the direct methanol fuel cel. Acta Chim. Sinica, 2013, 71: 1225-1238. |
[6] | YU X W, PICKUP P G.Recent advances in direct formic acid fuel cells (DFAFC.J. Power Sources, 2008, 182: 124-132. |
[7] | LIN L, ZHU Q, XU A W.Anode catalysts and cathode catalysts of direct methanol fuel cell.Prog. Chem., 2015, 27(9): 1147-1157. |
[8] | KAKATI N, MAITI J, LEE S H,et al.Anode catalysts for direct methanol fuel cells in acidic media: Do we have any alternative for Pt or Pt-Ru ?Chem. Rev., 2014, 114: 12397-12429. |
[9] | KOENIGSMANN C, WONG S S.One-dimensional noble metal electrocatalysts: A promising structural paradigm for direct methanol fuel cell.Eng. & Environ. Sci., 2011, 4: 1161-1176. |
[10] | ZHAO X, YIN M, MA L,et al.Recent advances in catalysts for direct methanol fuel cell. Eng. Environ. Sci., 2011, 4: 2736-2753. |
[11] | HUANG H J, WANG X J.Recent progress on carbon-based support materials for electrocatalysts of direct methanol fuel cell.Mater. Chem., 2014, 2: 6266-6291. |
[12] | ANTOLINI E.Composite materials: An emerging class of fuel cell catalyst support.Appl. Catal. B: Environ., 2010, 100: 413-426. |
[13] | SHRESTHA S, LIU Y, MUSTAIN W E.Electrocatalytic activity and stability of Pt clusters on state-of-the-art supports: A revie.Catal. Rev., 2011, 53: 256-336. |
[14] | LIU Y, GOKCEN D, BERTOCCI U,et al.Self-terminating growth of platinum films by electrochemical depositio. Science, 2012, 338(6112): 1327-1330. |
[15] | LV Q, YIN M, ZHAO X,et al.Promotion effect of TiO2 on catalytic activity and stability of Pt catalyst for electrooxidation of methanol. J. Power Sources, 2012, 218(12): 93-99. |
[16] | MURAWSKA M, COX J A, MIECZNIKOWSKI K.PtIr-WO3 nanostructured alloy for electrocatalytic oxidation of ethylene glycol and ethano.J. Solid State Electrochem., 2014, 18(11): 3003-3010. |
[17] | ZHANG H, HU C, HE X,et al.Pt support of multidimensional active sites and radial channels formed by SnO2, flower-like crystals for methanol and ethanol oxidation. J. Power Sources, 2011, 196: 4499-4505. |
[18] | LINSEBIGLER A L, LU G, YATES J T.Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected result.Chem. Rev., 1995, 95(3): 735-758. |
[19] | SCHNEIDER J, MATSUOKA M, TAKEUCHI M,et al. Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev., 2014, 114(19): 9919-9986. |
[20] | ZHOU H L, QU Y Q, ZEID T,et al.Towards highly efficient photocatalysts using semiconductor nanoarchitecture. Eng. Environ. Sci., 2012, 5(5): 6732-6743. |
[21] | DREW K, GIRISHKUMAR G, VINODGOPAL K,et al.Boosting fuel cell performance with a semiconductor photocatalyst: TiO2/Pt-Ru hybrid catalyst for methanol oxidation. J. Phys. Chem. B, 2005, 109(24): 11851-11857. |
[22] | HE H.C, XIAO P, ZHOU M,et al.Boosting catalytic activity with a p-n junction: Ni/TiO2, nanotube arrays composite catalyst for methanol oxidation. Int. J. Hydrogen Energy, 2012, 37(6): 4967-4973. |
[23] | CHEN W T, LIN Y K, YANG T T, et al.Au/ZnS core/shell nanocrystals as an efficient anode photocatalyst in direct methanol fuel cells. J. Chem. Comm., 2013, 49(76): 8486-8488. |
[24] | MOJUMDER N, SARKER S, ABBAS S A,et al.Photoassisted enhancement of the electrocatalytic oxidation of formic acid on platinized TiO2 nanotubes. ACS Appl. Mater. Interfaces., 2014, 6(8): 5585-5594. |
[25] | WANG T, TANG J, WU S C,et al.Preparation of ordered mesoporous WO3-TiO2, films and their performance as functional Pt supports for synergistic photo-electrocatalytic methanol oxidation. J. Power Sources, 2014, 248(7): 510-516. |
[26] | SU C Y, HSUEH Y C, KEI C C,et al.Fabrication of high-activity hybrid Pt@ZnO catalyst on carbon cloth by atomic layer deposition for photoassisted electro-oxidation of methano. J. Phys. Chem. C, 2013, 117(22): 11610-11618. |
[27] | ZHAI C Y, ZHU M S, BIN D,et al.Visible-light-assisted electrocatalytic oxidation of methanol using reduced graphene oxide modified Pt nanoflowers-TiO2 nanotube arrays. ACS Appl. Mater. Inter., 2014, 6(20): 17753-17761. |
[28] | LEELAVATHI A, MADRAS G, RAVISHANKAR N.New insights into electronic and geometric effects in the enhanced photoelectrooxidation of ethanol using ZnO nanorod/ultrathin Au nanowire hybrid.J. Am. Chem. Soc., 2014, 136(41): 14445-14455. |
[29] | SONG Y Y, GAO Z D, SCHMUKI P.Highly uniform Pt nanoparticle decoration on TiO2, nanotube arrays: a refreshable platform for methanol electrooxidatio.Electrochem. Commun., 2011, 13(3): 290-293. |
[30] | ZHAI C Y, ZHU M S, PANG F Z, et al.High efficiency photoelectrocatalytic methanol oxidation on CdS quantum dots sensitized Pt electrode. ACS Appl. Mater. Inter., 2016, 8: 5972-5980. |
[31] | HOSSEINI M G, MOMENI M M.UV-cleaning properties of Pt nanoparticle-decorated titania nanotubes in the electro-oxidation of methanol: an anti-poisoning and refreshable electrod.Electrochim. Acta, 2012, 70(6): 1-9. |
[32] | WU S C, HE J P, ZHOU J H,et al.Fabrication of unique stripe-shaped mesoporous TiO2 films and their performance as a novel photo-assisted catalyst support for DMFC. J. Mater. Chem., 2011, 21(9): 2852-2854. |
[33] | FAN X L, ZHANG C X, XUE H R,et al.Fabrication of SiO2 incorporated ordered mesoporous TiO2 composite films as functional Pt supports for photo-electrocatalytic methanol oxidation. RSC Adv., 2015, 5(96): 78880-78888. |
[34] | HE H C, XIAO P, ZHOU M,et al.Preparation of well-distributed Pt-Ni nanoparticles on/into TiO2 NTs by pulse electrodeposition for methanol photoelectro-oxidation. Catal. Commun., 2011, 16(1): 140-143. |
[35] | He H C, XIAO P, ZHOU M,et al.PtNi alloy nanoparticles supported on carbon-doped TiO2, nanotube arrays for photo-assisted methanol oxidation. Electrochim. Acta, 2013, 88(2): 782-789. |
[36] | LIU J, LIU B, NI Z Y,et al.Improved catalytic performance of Pt/TiO2, nanotubes electrode for ammonia oxidation under UV-light illumination. Electrochim. Acta, 2014, 150: 146-150. |
[37] | WANG C Q, YUE R R, WANG H W,et al.Dendritic Ag@Pt core-shell catalyst modified with reduced graphene oxide and titanium dioxide: Fabrication, characterization, and its photo-electrocatalytic performanc. Int. J. Hydrogen Energy, 2014, 39(11): 5764-5771. |
[38] | ROKESH K, PANDIKUMAR A, MOHAN S C,et al.Aminosilicate Sol-Gel supported zinc oxide-silver nanocomposite material for photoelectrocatalytic oxidation of methano. J. Alloys Compd., 2016, 680: 633-641. |
[39] | CHU D B, WANG S X, ZHENG P,et al.Anode catalysts for direct ethanol fuel cells utilizing directly solar light illuminatio. ChemSusChem, 2009, 2(2): 171-176. |
[40] | WANG C Q, JIANG F X, YUE R R,et al.Enhanced photo-electrocatalytic performance of Pt/RGO/TiO2 on carbon fiber towards methanol oxidation in alkaline media. J. Solid State Electrochem., 2014, 18(2): 515-522. |
[41] | SANKAR M, DIMITRATOS N, MIEDZIAK P J,et al.Designing bimetallic catalysts for a green and sustainable futur. Chem. Soc. Rev., 2013, 41(12): 8099-8139. |
[42] | PANDIKUMAR A, MURUGESAN S, RAMARAJ R.Functionalized silicate Sol-Gel-supported TiO2-Au core-shell nanomaterials and their photoelectrocatalytic activit.ACS Appl. Mater. Inter., 2010, 2(7): 1912-1917. |
[43] | ZHANG H M, ZHOU W Q, DU Y K,et al.Enhanced electrocatalytic performance for methanol oxidation on Pt-TiO2 /ITO electrode under UV illumination. Int. J. Hydrogen Energy, 2010, 35(24): 13290-13297. |
[44] | HOSSEINI M G, MOMENI M M. Platinum nanoparticle-decorated TiO2, nanotube arrays as new highly active and non-poisoning catalyst for photo-electrochemical oxidation of galactose. Appl. Catal. A: Gen.#/magtechI#, 2012, 427 . 428 (10): 35-42. |
[45] | HOSSEINI M G, MOMENI M M.Evaluation of the performance of platinum nanoparticle-titanium oxide nanotubes as a new refreshable electrode for formic acid electro-oxidatio.Fuel Cells, 2012, 12(3): 406-414. |
[46] | HOSSEINI M G, MOMENI M M.Fabrication and photo- electrocatalytic activity of highly oriented titania nanotube loaded with platinum nanoparticles for electro-oxidation of lactose: a new recyclable electro-catalys.J. Mol. Catal. A: Chem., 2012, 355: 216-222. |
[47] | PANDIYARAJAN C, PANDIKUMAR A, RAMARAJ R.Photoelectrocatalytic performance of a titania-keggin type polyoxometalate-gold nanocomposite modified electrode in methanol oxidatio.Nanotechnology, 2013, 24(43): 435401-435408. |
[48] | WANG C Q, JIANG F X, RONG Z,et al.Enhancement of methanol electrocatalytic oxidation on platinized WO3-TiO2 composite electrode under visible light irradiation. Mater. Res. Bull., 2013, 48(3): 1099-1104. |
[49] | LIN C T, HUANG H J, YANG J J,et al.A simple fabrication process of Pt-TiO2 hybrid electrode for photo-assisted methanol fuel cells. Microelectron. Eng., 2011, 88(8): 2644-2646. |
[50] | LI W, BAI Y, LI F J, et al.Core-shell TiO2/C nanofibers as supports for electrocatalytic and synergistic photoelectrocatalytic oxidation of methanol.J. Mater. Chem., 2012, 22: 4025-4031. |
[51] | HSU Y H, NGUYEN A T, CHIU Y H,et al.Au-decorated GaOOH nanorods enhanced the performance of direct methanol fuel cells under light illuminatio. Appli. Catal. B: Environ., 2015, 185: 133-140. |
[52] | XIE J, ZHANG Q H, GU L,et al.Ruthenium-platinum core-shell nanocatalysts with substantially enhanced activity and durability towards methanol oxidatio. Nano Energy, 2016, 21: 247-257. |
[53] | SAIDA T, OGIWARA N, TAKASU Y,et al.Titanium oxide nanosheet modified PtRu/C electrocatalyst for direct methanol fuel cell anode. J. Phys. Chem., 2010, 114(31): 13390-13396. |
[54] | ARULMANI D V, EASTCOTT J I, MAVILLA S G,et al.Photo- enhanced activity of Pt and Pt-Ru catalysts towards the electro- oxidation of methano. J. Power Sources, 2014, 247(2): 890-895. |
[55] | POLO A S, SANTOS M C, SOUZA R F B,et al.Pt-Ru-TiO2 photoelectrocatalysts for methanol oxidation. J. Power Sources, 2011, 196: 872-876. |
[56] | JIA C C, YIN H M, MA H,et al.Enhanced photoelectrocatalytic activity of methanol oxidation on TiO2-decorated nanoporous gold. J. Phys. Chem. C, 2009, 113(36): 16138-16143. |
[57] | KANG S, SHEN P K.Facial synthesis of porous hematite supported Pt catalyst and its photo enhanced electrocatalytic ethanol oxidation performanc.Electrochim. Acta, 2015, 168(10): 104-110. |
[58] | SHI W D, SONG S Y, ZHANG H J.Hydrothermal synthetic strategies of inorganic semiconducting nanostructure.Chem. Soc. Rev., 2013, 42(13): 5714-5743. |
[59] | LI Z S, YE L T, LEI F L,et al.Enhanced electro-photo synergistic catalysis of Pt(Pd)/ZnO/graphene composite for methanol oxidation under visible light irradiatio. Electrochim. Acta, 2015, 188: 450-460. |
[60] | LEI F L, LI Z S, YE L T,et al.One-pot synthesis of Pt/SnO2 /GNs and its electro-photo-synergistic catalysis for methanol oxidation. Int. J. Hydrogen Energy, 2016, 41(1): 255-264. |
[61] | YE L T, LI Z S, ZHANG L,et al.A green one-pot synthesis of Pt/TiO2/graphene composites and its electro-photo-synergistic catalytic properties for methanol oxidation. J. Colloid Inter. Sci., 2014, 433(11): 156-162. |
[62] | YE L T, LI Z S, ZHANG L,et al.One-step microwave synthesis of Pt (Pd)/Cu2O/GNs composites and their electro-photo-synergistic catalytic properties for methanol oxidation. J. Mater. Chem. A, 2014, 2(48): 21010-21019. |
[63] | LIN C T, SHIAO M H, CHANG M N,et al.A facile approach to prepare silicon-based Pt-Ag tubular dendritic nano-forests (tDNFs) for solar-light-enhanced methanol oxidation reactio. Res. Lett., 2015, 10(1): 1-8. |
[64] | PARK K W, HAN S B, LEE J M.Photo(UV)-enhanced performance of Pt-TiO2, nanostructure electrode for methanol oxidatio.Electrochem. Commun., 2007, 9(7): 1578-1581. |
[65] | XU M Li, DUAN BEN, ZHANG Y J, et al.Effect of modification factors of MWCNTs support on electrocatalytic performance of Pt nanoparticles. J. Inorg. Mater., 2015, 30(9): 931-936. |
[66] | SONG H Q, QIU X P, LI X X,et al.TiO2, nanotubes promoting Pt/C catalysts for ethanol electro-oxidation in acidic media. J. Power Sources, 2007, 170(1): 50-54. |
[67] | XING L, JIA J B, WANG Y Z,et al.Pt modified TiO2 nanotubes electrode: Preparation and electrocatalytic application for methanol oxidation. Int. J. Hydrogen Energy, 2010, 35(22): 12169-12173. |
[68] | ZHU M S, CHEN P L, LIU M H.Ag/AgBr/Graphene oxide nanocomposite synthesized via oil/water and water/oil microemulsions: A comparison of sunlight energized plasmonic photocatalytic activit.Langmuir, 2012, 28(7): 3385-3390. |
[69] | ZHANG X M, CHEN Y L, LIU R S,et al.Plasmonic photocatalysis. Rep. Prog. Phys., 2013, 76(4): 2020-2027. |
[70] | ZHU M S, CHEN P L, LIU M H.Ag/AgX(X = CI, Br, I): A new type plasmonic photocatalyst.Prog. Chem., 2013, 25(2): 209-220. |
[71] | ZHU M S, CHEN P L, LIU M H.Graphene oxide enwrapped Ag/AgX (X = Br, Cl) nanocomposite as a highly efficient visible-light plasmonic photocatalys.ACS Nano, 2011, 5(6): 4529-4536. |
[72] | LIN C T, CHANG M N, HUANG H J,et al.Rapid fabrication of three-dimensional gold dendritic nanoforests for visible light-enhanced methanol oxidatio. Electrochim. Acta, 2016, 192: 15-21. |
[1] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
[2] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[3] | CHEN Qiang, BAI Shuxin, YE Yicong. Highly Thermal Conductive Silicon Carbide Ceramics Matrix Composites for Thermal Management: a Review [J]. Journal of Inorganic Materials, 2023, 38(6): 634-646. |
[4] | LIN Junliang, WANG Zhanjie. Research Progress on Ferroelectric Superlattices [J]. Journal of Inorganic Materials, 2023, 38(6): 606-618. |
[5] | NIU Jiaxue, SUN Si, LIU Pengfei, ZHANG Xiaodong, MU Xiaoyu. Copper-based Nanozymes: Properties and Applications in Biomedicine [J]. Journal of Inorganic Materials, 2023, 38(5): 489-502. |
[6] | YUAN Jingkun, XIONG Shufeng, CHEN Zhangwei. Research Trends and Challenges of Additive Manufacturing of Polymer-derived Ceramics [J]. Journal of Inorganic Materials, 2023, 38(5): 477-488. |
[7] | DU Jianyu, GE Chen. Recent Progress in Optoelectronic Artificial Synapse Devices [J]. Journal of Inorganic Materials, 2023, 38(4): 378-386. |
[8] | YANG Yang, CUI Hangyuan, ZHU Ying, WAN Changjin, WAN Qing. Research Progress of Flexible Neuromorphic Transistors [J]. Journal of Inorganic Materials, 2023, 38(4): 367-377. |
[9] | YOU Junqi, LI Ce, YANG Dongliang, SUN Linfeng. Double Dielectric Layer Metal-oxide Memristor: Design and Applications [J]. Journal of Inorganic Materials, 2023, 38(4): 387-398. |
[10] | LIN Siqi, LI Airan, FU Chenguang, LI Rongbing, JIN Min. Crystal Growth and Thermoelectric Properties of Zintl Phase Mg3X2 (X=Sb, Bi) Based Materials: a Review [J]. Journal of Inorganic Materials, 2023, 38(3): 270-279. |
[11] | ZHANG Chaoyi, TANG Huili, LI Xianke, WANG Qingguo, LUO Ping, WU Feng, ZHANG Chenbo, XUE Yanyan, XU Jun, HAN Jianfeng, LU Zhanwen. Research Progress of ScAlMgO4 Crystal: a Novel GaN and ZnO Substrate [J]. Journal of Inorganic Materials, 2023, 38(3): 228-242. |
[12] | CHEN Kunfeng, HU Qianyu, LIU Feng, XUE Dongfeng. Multi-scale Crystallization Materials: Advances in in-situ Characterization Techniques and Computational Simulations [J]. Journal of Inorganic Materials, 2023, 38(3): 256-269. |
[13] | QI Zhanguo, LIU Lei, WANG Shouzhi, WANG Guogong, YU Jiaoxian, WANG Zhongxin, DUAN Xiulan, XU Xiangang, ZHANG Lei. Progress in GaN Single Crystals: HVPE Growth and Doping [J]. Journal of Inorganic Materials, 2023, 38(3): 243-255. |
[14] | XIE Bing, CAI Jinxia, WANG Tongtong, LIU Zhiyong, JIANG Shenglin, ZHANG Haibo. Research Progress of Polymer-based Multilayer Composite Dielectrics with High Energy Storage Density [J]. Journal of Inorganic Materials, 2023, 38(2): 137-147. |
[15] | FENG Jingjing, ZHANG Youran, MA Mingsheng, LU Yiqing, LIU Zhifu. Current Status and Development Trend of Cold Sintering Process [J]. Journal of Inorganic Materials, 2023, 38(2): 125-136. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||