Journal of Inorganic Materials ›› 2017, Vol. 32 ›› Issue (7): 705-712.DOI: 10.15541/jim20160520
• Orginal Article • Previous Articles Next Articles
BAI Xue-Jun1, LIU Chan1, HOU Min1, WANG Biao2, CAO Hui1,3, FU Jun-Jie4
Received:
2016-09-18
Revised:
2016-11-25
Published:
2017-07-20
Online:
2017-06-23
CLC Number:
BAI Xue-Jun, LIU Chan, HOU Min, WANG Biao, CAO Hui, FU Jun-Jie. Silicon/CNTs/Graphene Free-standing Anode Material for Lithium-ion Battery[J]. Journal of Inorganic Materials, 2017, 32(7): 705-712.
Fig. 5 XPS spectra of CNTs, Si/GP, Si/CNTs/GO, and Si/CNTs/GP composite(a) Survey spectra; (b) High resolution C1s spectra; (c) High resolution N1s spectra; (d) High resolution Si2p spectra
Sample | Rs/Ω | RSEI /Ω | Rct/Ω |
---|---|---|---|
Si/GP | 3.5 | 22.1 | 25.2 |
Si/CNTs/GP-1 | 2.5 | 8.7 | 19.9 |
Si/CNTs/GP-2 | 2.0 | 1.7 | 18.1 |
Table 1 EIS fitting results of Si/GP and Si/CNTs/GP-(1, 2) electrodes
Sample | Rs/Ω | RSEI /Ω | Rct/Ω |
---|---|---|---|
Si/GP | 3.5 | 22.1 | 25.2 |
Si/CNTs/GP-1 | 2.5 | 8.7 | 19.9 |
Si/CNTs/GP-2 | 2.0 | 1.7 | 18.1 |
[1] | GOODENOUGH J B, KIM Y.Challenges for rechargeable Li batteries.Chem. Mater., 2010, 22(3): 587-603. |
[2] | DUNN B, KAMATH H, TARASCON J M.Electrical energy storage for the grid: a battery of choices.Science, 2011, 334(6058): 928-935. |
[3] | LI H, WANG Z, CHEN L, et al.Research on advanced materials for Li-ion batteries. Adv. Mater., 2009, 21(45): 4593-4607. |
[4] | TARASCON J M, ARMAND M.Issues and challenges facing rechargeable lithium batteries.Nature, 2001, 414(6861): 359-367. |
[5] | WANG H B, ZHOU Y H, TAO Z L, et al.Research progress of silicon-based anodes for lithium-ion batteries.Chinese J. Power Sources, 2009, 33(11): 1029-1032. |
[6] | GUO B K, SHU J, WANG Z X, et al.Electrochemical reduction of nano-SiO2 in hard carbon as anode material for lithium ion batteries.Electrochem. Commun., 2008, 10(12): 1876-1878. |
[7] | SUN Q, ZHANG B, FU Z W.Lithium electrochemistry of SiO2 thin film electrode for lithium-ion batteries.Appl. Surf. Sci., 2008, 254(13): 3774-3779. |
[8] | CHANG W S, PARK C M, KIM J H, et al.Quartz (SiO2): a new energy storage anode material for Li-ion batteries.Energy Environ. Sci., 2012, 5(5): 6895-6899. |
[9] | YU B C, HWA Y, KIM J H, et al.A new approach to synthesis of porous SiOx anode for Li-ion batteries via chemical etching of Si crystallites.Electrochem. Acta, 2014, 117(4): 426-430. |
[10] | MA C L, MA C, WANG J Z, et al.Exfoliated graphite as a flexible and conductive support for Si-based Li-ion battery anodes.Carbon, 2014, 72(3): 38-46. |
[11] | ZHOU X, YIN Y X, WAN L J, et al.Self-assembled nanocomposite of silicon nanoparticles encapsulated in graphene through electrostatic attraction for lithium-ion batteries.Adv. Energy Mater., 2012, 2(9): 1086-1090. |
[12] | SI Q, HANAI K, ICHIKAWA T, et al.A high performance silicon/carbon composite anode with carbon nanofiber for lithium-ion batteries.J. Power Sources, 2010, 195(6): 1720-1725. |
[13] | WANG L, DING C X, ZHANG L C, et al.A novel carbon-silicon composite nanofiber prepared via electrospinning as anode material for high energy-density lithium ion batteries.J. Power Sources, 2010, 195(15): 5052-5056. |
[14] | WU H, ZHENG G, LIU N, et al.Engineering empty space between Si nanoparticles for lithium-ion battery anodes.Nano Lett., 2012, 12(2): 904-909. |
[15] | JOHNSON D C, MOSBY J M, RIHA S C, et al.Synthesis of copper silicide nanocrystallites embedded in silicon nanowires for enhanced transport properties.J. Mater. Chem., 2010, 20(10): 1993-1998. |
[16] | LAÏK B, UNG D, CAILLARD A, et al. An electrochemical and structural investigation of silicon nanowires as negative electrode for Li-ion batteries.J. Solid State Electrochem., 2010, 14(10): 1835-1839. |
[17] | CHEN H, XIAO Y, WANG L, et al.Silicon nanowires coated with copper layer as anode materials for lithium-ion batteries.J. Power Sources, 2011, 196(16): 6657-6662. |
[18] | HU L B, WU H, HONG S S, et al.Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes.Chem. Commun., 2011, 47(1): 367-369. |
[19] | PARK M H, KIM M G, JOO J, et al.Silicon nanotube battery anodes.Nano Lett., 2009, 9(11): 3844-3847. |
[20] | LEE W J, PARK M H, WANG Y, et al.Nanoscale Si coating on the pore walls of SnO2 nanotube anode for Li rechargeable batteries.Chem. Commun., 2010, 46(4): 622-624. |
[21] | SONG T, XIA J L, LEE J H, et al.Arrays of sealed silicon nanotubes As anodes for lithium ion batteries.Nano Lett., 2010, 10(5): 1710-1716. |
[22] | YU Y, GU L, ZHU C, et al.Reversible storage of lithium in silver-coated three-dimensional macroporous silicon.Adv. Mater., 2010, 22(20): 2247-2250. |
[23] | YAO Y, MCDOWELL M T, RYU I, et al.Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life.Nano Lett., 2011, 11(7): 2949-2954. |
[24] | CHEN D, MEI X, JI G, et al.Reversible lithium-ion storage in silver-treated nanoscale hollow porous silicon particles.Angew. Chem. Int. Ed. Engl., 2012, 51(10): 2409-2413. |
[25] | BAI X, WANG B, WANG H, et al.In situ synthesis of carbon fiber-supported SiOx as anode materials for lithium ion batteries.RSC Adv., 2016, 6(39): 32798-32803. |
[26] | LEE B S, SON S B, PARK K M, et al.Fabrication of Si core/C shell nanofibers and their electrochemical performances as a lithium-ion battery anode.J. Power Sources, 2012, 206(2): 267-273. |
[27] | LIU X H, ZHANG J, SI W P, et al.Sandwich nano architecture of Si/reduced graphene oxide bilayer nanomembranes for Li-ion batteries with long cycle life.ACS Nano, 2015, 9(2): 1198-1205. |
[28] | ZHAO X, HAYNER C M, KUNG M C, et al.In-plane vacancy-enabled high-power Si-graphene composite electrode for lithium-ion batteries.Adv. Energy Mater., 2011, 1(6): 1079-1084. |
[29] | MAGASINSKI A, DIXON P, HERZBERG B, et al.High- performance lithium-ion anodes using a hierarchical bottom-up approach.Nature Mater., 2010, 9(4): 353-358. |
[30] | BAI X J, YU Y Y, KUNG H H, et al.Si@SiOx/graphene hydrogel composite anode for lithium-ion battery.J. Power Sources, 2016, 306: 42-48. |
[31] | ZHANG S, SHAO Y Y, LIAO H G, et al.Polyelectrolyte-induced reduction of exfoliated graphite xxide: a facile route to synthesis of soluble graphene nanosheets.ACS Nano, 2011, 5(3): 1785-1791. |
[32] | ZHANG J, JIANG J, ZHAO X S.Synthesis and capacitive properties of manganese oxide nanosheets dispersed on functionalized graphene Sheets.J. Phys. Chem. C, 2011, 115(14): 6448-6454. |
[33] | ZHU Y C, ZHOU Y H, YU L Y, et al.A highly stable and active Pd catalyst on monolithic cordierite with graphene coating assisted by PDDA.RSC Adv., 2014, 4(19): 9480-9483. |
[34] | ZHANG H J, GAI P B, CHENG R, et al.Self-assembly synthesis of a hierarchical structure using hollow nitrogen-doped carbon spheres as spacers to separate the reduced graphene oxide for simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid.Anal. Methods, 2013, 5(14): 3591-3600. |
[35] | WANG D W, MIN Y G, YU Y H, et al.A general approach for fabrication of nitrogen-doped graphene sheets and its application in supercapacitors.J. Colloid and Interf. Sci., 2014, 417(3): 270-277. |
[1] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[2] | CHEN Qiang, BAI Shuxin, YE Yicong. Highly Thermal Conductive Silicon Carbide Ceramics Matrix Composites for Thermal Management: a Review [J]. Journal of Inorganic Materials, 2023, 38(6): 634-646. |
[3] | FU Shi, YANG Zengchao, LI Honghua, WANG Liang, LI Jiangtao. Mechanical Properties and Thermal Conductivity of Si3N4 Ceramics with Composite Sintering Additives [J]. Journal of Inorganic Materials, 2022, 37(9): 947-953. |
[4] | CHEN Saisai, PANG Yali, WANG Jiaona, GONG Yan, WANG Rui, LUAN Xiaowan, LI Xin. Preparation and Properties of Green-yellow Reversible Electro-thermochromic Fabric [J]. Journal of Inorganic Materials, 2022, 37(9): 954-960. |
[5] | SU Nana, HAN Jingru, GUO Yinhao, WANG Chenyu, SHI Wenhua, WU Liang, HU Zhiyi, LIU Jing, LI Yu, SU Baolian. ZIF-8-derived Three-dimensional Silicon-carbon Network Composite for High-performance Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(9): 1016-1022. |
[6] | WANG Yang, FAN Guangxin, LIU Pei, YIN Jinpei, LIU Baozhong, ZHU Linjian, LUO Chengguo. Microscopic Mechanism of K+ Doping on Performance of Lithium Manganese Cathode for Li-ion Battery [J]. Journal of Inorganic Materials, 2022, 37(9): 1023-1029. |
[7] | ZHU Hezhen, WANG Xuanpeng, HAN Kang, YANG Chen, WAN Ruizhe, WU Liming, MAI Liqiang. Enhanced Lithium Storage Stability Mechanism of Ultra-high Nickel LiNi0.91Co0.06Al0.03O2@Ca3(PO4)2 Cathode Materials [J]. Journal of Inorganic Materials, 2022, 37(9): 1030-1036. |
[8] | FENG Kun, ZHU Yong, ZHANG Kaiqiang, CHEN Zhang, LIU Yu, GAO Yanfeng. Boehmite Nanosheets-coated Separator with Enhanced Performance for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(9): 1009-1015. |
[9] | ZHANG Ye, ZENG Yuping. Progress of Porous Silicon Nitride Ceramics Prepared via Self-propagating High Temperature Synthesis [J]. Journal of Inorganic Materials, 2022, 37(8): 853-864. |
[10] | OUYANG Qin, WANG Yanfei, XU Jian, LI Yinsheng, PEI Xueliang, MO Gaoming, LI Mian, LI Peng, ZHOU Xiaobing, GE Fangfang, ZHANG Chonghong, HE Liu, YANG Lei, HUANG Zhengren, CHAI Zhifang, ZHAN Wenlong, HUANG Qing. Research Progress of SiC Fiber Reinforced SiC Composites for Nuclear Application [J]. Journal of Inorganic Materials, 2022, 37(8): 821-840. |
[11] | CHEN Ying, LUAN Weiling, CHEN Haofeng, ZHU Xuanchen. Multi-scale Failure Behavior of Cathode in Lithium-ion Batteries Based on Stress Field [J]. Journal of Inorganic Materials, 2022, 37(8): 918-924. |
[12] | SUN Ming, SHAO Puzhen, SUN Kai, HUANG Jianhua, ZHANG Qiang, XIU Ziyang, XIAO Haiying, WU Gaohui. First-principles Study on Interface of Reduced Graphene Oxide Reinforced Aluminum Matrix Composites [J]. Journal of Inorganic Materials, 2022, 37(6): 651-659. |
[13] | ZHAO Yuyao, OUYANG Jun. Columnar Nanograined BaTiO3 Ferroelectric Thin Films Integrated on Si with a Sizable Dielectric Tunability [J]. Journal of Inorganic Materials, 2022, 37(6): 596-602. |
[14] | WANG Hongli, WANG Nan, WANG Liying, SONG Erhong, ZHAO Zhankui. Hydrogen Generation from Formic Acid Boosted by Functionalized Graphene Supported AuPd Nanocatalysts [J]. Journal of Inorganic Materials, 2022, 37(5): 547-553. |
[15] | AN Lin, WU Hao, HAN Xin, LI Yaogang, WANG Hongzhi, ZHANG Qinghong. Non-precious Metals Co5.47N/Nitrogen-doped rGO Co-catalyst Enhanced Photocatalytic Hydrogen Evolution Performance of TiO2 [J]. Journal of Inorganic Materials, 2022, 37(5): 534-540. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||