Journal of Inorganic Materials ›› 2017, Vol. 32 ›› Issue (7): 691-698.DOI: 10.15541/jim20160493
• Orginal Article • Previous Articles Next Articles
YANG Kun-Kun1,2, YANG Shao-Hua1,2, ZHAO Ping1,2, ZHAO Yan-Long3
Received:
2016-08-29
Revised:
2016-11-20
Published:
2017-07-20
Online:
2017-06-23
About author:
YANG Kun-Kun. E-mail: kkyang69@126.com
CLC Number:
YANG Kun-Kun, YANG Shao-Hua, ZHAO Ping, ZHAO Yan-Long. Hydrothermal Synthesis of FeS2/Reduced Graphene Oxide Nanocomposite with Enhanced Discharge Performance for Thermal Battery[J]. Journal of Inorganic Materials, 2017, 32(7): 691-698.
Sample | D10/μm | D25/μm | D50/μm | D75/μm | D90/μm |
---|---|---|---|---|---|
FeS2 | 3.07 | 7.07 | 14.92 | 27.22 | 42.77 |
FeS2/RGO | 4.33 | 6.96 | 10.65 | 15.12 | 19.73 |
Table 1 Particle size distributions of FeS2 and FeS2/RGO
Sample | D10/μm | D25/μm | D50/μm | D75/μm | D90/μm |
---|---|---|---|---|---|
FeS2 | 3.07 | 7.07 | 14.92 | 27.22 | 42.77 |
FeS2/RGO | 4.33 | 6.96 | 10.65 | 15.12 | 19.73 |
[1] | 陆瑞生, 刘效疆. 热电池, 北京:国防工业出版, 2005: 80-108. |
[2] | GUIDOTTI R A, MASSET P J.Thermally activated (“thermal”) battery technology Part I: An overview.Journal of Power Sources, 2006, 161(2): 1443-1449. |
[3] | GUIDOTTI R A, MASSET P J.Thermally activated (“thermal”) battery technology Part IV. Anode materials.Journal of Power Sources, 2008, 183(1): 388-398. |
[4] | MASSET P J, GUIDOTTI R A.Thermal activated (“thermal”) battery technology Part IIIa: FeS2 cathode material.Journal of Power Sources, 2008, 177(2): 595-609. |
[5] | DONG J, CHONG J.Influencing factors of the thermal stability for pyrite.Chinese Journal of Power Sources, 2008, 32(03): 147-150. |
[6] | GUIDOTTI R A, REINHARDT F W, DAI J, et al.Performance of thermal cells and batteries made with plasma-sprayed cathodes and anodes.Journal of Power Sources, 2006, 160(2): 1456-1464. |
[7] | CHEN W H, YANG S H, MENG J H, et al.Preparation of FeS2 thin-film cathode for thermal batteries by screen printing.Chinese Journal of Power Sources, 2013, 37(02): 226-227. |
[8] | YANG X W, LIU X J, YANG Z T, et al.Effects of FeS2 preparation conditions on the properties of LiSi/FeS2 thermal battery.Journal of Synthetic Crystals, 2014,43(04): 839-844. |
[9] | YANG Z T, LIU X J, FENG X L, et al. Thermal battery applications of pyrite prepared by hydrothermal method.Journal of Synthetic Crystals, 2013(09): 1896-1900. |
[10] | AWANO A, HARAGUCHI K, YAMASAKI H.Li/Fe1-xCoxS2 System Thermal Battery Performance. Power Sources Symposium, IEEE 35th International, Cherry Hill, US, 1992. 219-222. |
[11] | SWIFT G, LAMB C. Thermal Battery Cathode Materials and Batteries Including Same. US Patent, 2010030853 A1.2010-12-09. |
[12] | FUJIWARA S, INABA M, TASAKA A.New molten salt systems for high temperature molten salt batteries: ternary and quaternary molten salt systems based on LiF-LiCl, LiF-LiBr, and LiCl-LiBr.Journal of Power Sources, 2011, 196(8): 4012-4018. |
[13] | MASSET P, SCHOEFFERT S, POINSO J Y, et al.LiF-LiCl-LiI vs. LiF-LiBr-KBr as molten salt electrolyte in thermal batteries. Journal of The Electrochemical Society, 2005, 152(2): A405-A410. |
[14] | CHONG J, CAO J J, ZHAO J F, et al.Effect of the cathode materials on the performances of thermal battery.Chinese Journal of Power Sources, 2004, 28(07): 419-422. |
[15] | LIN B S, YANG S H, CAO X H.Voltage peak clipping research of FeS2 thin film cathode for thermal battery.Chinese Journal of Power Sources, 2015, 39(06): 1269-1270. |
[16] | BA Z J, YANG S H, CAO X H, et al.Preparation and discharge performance of carbonized cobalt disulfide electrode materials.Materials for Mechanical Engineering, 2016, 40(2): 76-78. |
[17] | CHOI Y, CHO S, LEE Y S.Effect of the addition of carbon black and carbon nanotube to FeS2 cathode on the electrochemical performance of thermal battery.Journal of Industrial and Engineering Chemistry, 2014, 20(5): 3584-3589. |
[18] | YUAN C J, YANG S H, CAO X H.Effects of conductive additives on the performance Cu3V2O8 cathode for low-temperature/ high-voltage thermal battery.Journal of Functional Materials, 2015, 46(17): 17046-17048. |
[19] | LV K, YANG S H, ZHAO P, et al.Research of performance influence factors of FeS2 thin-film cathodes for LiSi/FeS2 thermal batteries.Chinese Journal of Power Sources, 2014, 38(8): 1519-1522. |
[20] | Zhao P, LV K, YANG S H, et al.Preparation and discharge performance of CoS2 cathode material for thermal battery.Journal of Functional Materials, 2013, 44(S1): 108-111. |
[21] | LIN B S, CAO X H, YANG S H, et al.Hydrothermal synthesis and discharge performance of NiS2 used for thermal battery.Journal of Shenyang Ligong University, 2014, 33(2): 26-30. |
[22] | PUMERA M.Graphene-based nanomaterials for energy storage.Energy Environ. Sci., 2011, 4(3): 668-674. |
[23] | ZHANG M, CHEN B, TANG H, et al.Hydrothermal synthesis and tribological properties of FeS2(pyrite)/reduced graphene oxide heterojunction.RSC Advances, 2015, 5(2): 1417-1423. |
[24] | XUE H, YU D, QING J, et al.Pyrite FeS2 microspheres wrapped by reduced graphene oxide as high-performance lithium-ion battery anodes.Journal of Materials Chemistry A, 2015, 3(15): 7945-7949. |
[25] | TAN R, YANG J, HU J, et al.Core-shell nano-FeS2@N-doped graphene as an advanced cathode material for rechargeable Li-ion batteries. Chemical Communications, 2016, 52(5): 986-989. |
[26] | QIU W, XIA J, ZHONG H, et al.L-cysteine-assisted synthesis of cubic pyrite/nitrogen-doped graphene composite as anode material for lithium-ion batteries.Electrochimica Acta, 2014, 137: 197-205. |
[27] | LIU W, XU L, LI X, SHEN C, et al.High-dispersive FeS2 on graphene oxide for effective degradation of 4-chlorophenol.RSC Advances, 2015, 5(4): 2449-2456. |
[28] | HUMMERS W S, OFFEMAN RE.Preparation of graphitic oxide.Journal of the American Chemical Society, 1958, 80(6): 1339. |
[29] | WANG J D, PENG T J, SUN H J, et al.Effect of the hydrothermal reaction temperature on three-dimensional reduced graphene oxide′s appearance, structure and super capacitor performance.Acta Phys. -Chim. Sin., 2014, 30(11): 2077-2084. |
[30] | STRAUSS E, ARDEL G, LIVSHITS V, et al.Lithium polymer electrolyte pyrite rechargeable battery: comparative characterization of natural pyrite from different sources as cathode material.Journal of Power Sources, 2000, 88(2): 206-218. |
[31] | PRETO S K, TOMCZUK Z, VON WINBUSH S, et al.Reactions of FeS2, CoS2, and NiS2 electrodes in molten LiCl-KCl electrolytes.Journal of The Electrochemical Society, 1983, 130(2): 264-273. |
[32] | YANG Z, LIU X, FENG X, et al.Hydrothermal synthesized micro/nano-sized pyrite used as cathode material to improve the electrochemical performance of thermal battery.Journal of Applied Electrochemistry, 2014, 44(10): 1075-1080. |
[1] | KONG Guoqiang, LENG Mingzhe, ZHOU Zhanrong, XIA Chi, SHEN Xiaofang. Sb Doped O3 Type Na0.9Ni0.5Mn0.3Ti0.2O2 Cathode Material for Na-ion Battery [J]. Journal of Inorganic Materials, 2023, 38(6): 656-662. |
[2] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[3] | LI Tao, CAO Pengfei, HU Litao, XIA Yong, CHEN Yi, LIU Yuejun, SUN Aokui. NH4+ Assisted Interlayer-expansion of MoS2: Preparation and Its Zinc Storage Performance [J]. Journal of Inorganic Materials, 2023, 38(1): 79-86. |
[4] | WANG Yang, FAN Guangxin, LIU Pei, YIN Jinpei, LIU Baozhong, ZHU Linjian, LUO Chengguo. Microscopic Mechanism of K+ Doping on Performance of Lithium Manganese Cathode for Li-ion Battery [J]. Journal of Inorganic Materials, 2022, 37(9): 1023-1029. |
[5] | LI Wenbo, HUANG Minsong, LI Yueming, LI Chilin. CoS2 as Cathode Material for Magnesium Batteries with Dual-salt Electrolytes [J]. Journal of Inorganic Materials, 2022, 37(2): 173-181. |
[6] | WANG Tingting, SHI Shumei, LIU Chenyuan, ZHU Wancheng, ZHANG Heng. Synthesis of Hierarchical Porous Nickel Phyllosilicate Microspheres as Efficient Adsorbents for Removal of Basic Fuchsin [J]. Journal of Inorganic Materials, 2021, 36(12): 1330-1336. |
[7] | SONG Keke, HUANG Hao, LU Mengjie, YANG Anchun, WENG Jie, DUAN Ke. Hydrothermal Preparation and Characterization of Zn, Si, Mg, Fe Doped Hydroxyapatite [J]. Journal of Inorganic Materials, 2021, 36(10): 1091-1096. |
[8] | WANG Wu-Lian, ZHANG Jun, WANG Qiu-Shi, CHEN Liang, LIU Zhao-Ping. High-quality Fe4[Fe(CN)6]3 Nanocubes: Synthesis and Electrochemical Performance as Cathode Material for Aqueous Sodium-ion Battery [J]. Journal of Inorganic Materials, 2019, 34(12): 1301-1308. |
[9] | WANG Jia-Hu, WANG Wen-Xin, DU Peng, HU Fang-Dong, JIANG Xiao-Lei, YANG Jian. Synthesis of Na3V2(PO4)2F3@V2O5-x as Cathode Material for Sodium-ion Battery [J]. Journal of Inorganic Materials, 2019, 34(10): 1097-1102. |
[10] | LEE Sai-Xi, WANG Xue-Yin, GU Qing-Wen, XIA Yong-Gao, LIU Zhao-Ping, HE Jie. Tuning Electrochemical Performance through Non-stoichiometric Compositions in High-voltage Spinel Cathode Materials [J]. Journal of Inorganic Materials, 2018, 33(9): 993-1000. |
[11] | WANG Shu-Jiang, YANG Yong-Heng, WEN Chun-Yang, ZHANG Guo-Kui, YUAN Chun-Hui. Preparation and Property of Nano-Ag/illite Composite Material [J]. Journal of Inorganic Materials, 2018, 33(5): 570-576. |
[12] | LUO Ling-Hong, HU Jia-Xing, CHENG Liang, XU Xu, WU Ye-Fan, LIN You-Chen. Performance of the Composite Cathode Ba0.5Sr0.5Co0.8Fe0.2O3-δ-Ce0.9Gd0.1O2-δ for Medium-low Temperature Solid Oxide Fuel Cell [J]. Journal of Inorganic Materials, 2018, 33(4): 441-446. |
[13] | LI Ling, LI Yun-Jiao, XU Bin, LU Wei-Sheng, SU Qian-Ye, CHEN Yong-Xiang, LI Lin. LiNixCoyMn1-x-yO2 Cathode Material Synthesized through Construction of E-pH Diagram and Its Electrochemical Performance [J]. Journal of Inorganic Materials, 2018, 33(3): 320-324. |
[14] | JIA Si-Qi, JIANG Zheng, CHI Li-Na, YE Ying, HU Shuang-Shuang. Synthesis and Photoelectrocatalytic Performance of Sb2S3 Nanorods from Natural Stibnite [J]. Journal of Inorganic Materials, 2018, 33(11): 1213-1218. |
[15] | GUO Yu, LI Dong-Xin, WU Hong-Mei, JIN Yu-Jia, ZHOU Li-Dai, CHEN Qiang-Qiang. Preparation, Characterization and Catalytic Performance of Supported Titanium Silicalite-1 Zeolite Membrane Catalyst [J]. Journal of Inorganic Materials, 2017, 32(6): 631-636. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||