Journal of Inorganic Materials ›› 2017, Vol. 32 ›› Issue (6): 571-580.DOI: 10.15541/jim20160461
• Orginal Article • Previous Articles Next Articles
LI Da-Chuan1,2, ZHAO Hua-Yu1, ZHONG Xing-Hua1, TAO Shun-Yan1
Received:
2016-08-08
Revised:
2016-09-26
Published:
2017-06-20
Online:
2017-05-27
About author:
LI Da-Chuan. E-mail: dachuan_li@student.sic.ac.cn
Supported by:
CLC Number:
LI Da-Chuan, ZHAO Hua-Yu, ZHONG Xing-Hua, TAO Shun-Yan. Research Progresses of Atmospheric Plasma Sprayed Splat[J]. Journal of Inorganic Materials, 2017, 32(6): 571-580.
Radial position /mm | Average particle diameter /μm | Average particle velocity/(m·s-1) | Average particle temperature /K |
---|---|---|---|
+50 | 25.7 | 236 | 3310 |
+40 | 26.3 | 247 | 3342 |
+30 | 27.8 | 254 | 3392 |
+20 | 30.3 | 248 | 3430 |
+10 | 32.3 | 233 | 3420 |
0 | 36.5 | 228 | 3400 |
-10 | 37.0 | 215 | 3340 |
-20 | 38.2 | 209 | 3310 |
-30 | 42.3 | 199 | 3294 |
-40 | 44.3 | 191 | 3270 |
-50 | 45.6 | 188 | 3250 |
Table 1 Average values of the particle size, velocity and temperature at different radial positions from the plasma jet center line[12]
Radial position /mm | Average particle diameter /μm | Average particle velocity/(m·s-1) | Average particle temperature /K |
---|---|---|---|
+50 | 25.7 | 236 | 3310 |
+40 | 26.3 | 247 | 3342 |
+30 | 27.8 | 254 | 3392 |
+20 | 30.3 | 248 | 3430 |
+10 | 32.3 | 233 | 3420 |
0 | 36.5 | 228 | 3400 |
-10 | 37.0 | 215 | 3340 |
-20 | 38.2 | 209 | 3310 |
-30 | 42.3 | 199 | 3294 |
-40 | 44.3 | 191 | 3270 |
-50 | 45.6 | 188 | 3250 |
Fig. 5 Comparison of cooling and solidification processes inside the splat deposited onto substrates at a temperature above (left) and below (right) transition temperature[34]
Fig. 7 Surface topologies of stainless steel surfaces either non-oxidized or preoxidized at different temperatures, images of nickel splats after solidification and cooling curves of splats[39]
Fig. 8 Grain size in a cross-section of the splat obtained in different ambient pressures[28](a) on stainless steel in atmospheric pressure; (b) on gold-coated stainless steel in atmospheric pressure; (c) on stainless steel under low pressure; and (d) on gold-coated stainless steel under low pressure
[1] | 徐滨士, 李长久, 刘世参, 等. 表面工程与热喷涂技术及其发展. 中国表面工程, 1998, 38(1): 3-9. |
[2] | 徐滨士, 马世宁, 时小军, 等. 中国表面工程的发展. 中国机械工程, 1996, 7(5): 3-5. |
[3] | 曹学强. 热障涂层新材料和新结构. 北京: 科学出版社, 2016. |
[4] | 黄小鸥, 吴朝军. 适应产业结构调整,开发新型涂层产品. 第十七届国际热喷涂研讨会(ITSS'2014)暨第十八届全国热喷涂年会(CNTSC'2014), 成都&自贡, 中国, 2014: 1-5. |
[5] | 中国表面工程协会热喷涂专业委员会. 中国热喷涂年鉴: 2015年版. 北京: 科学技术文献出版社, 2016. |
[6] | FAUCHAIS P, HEBERLEIN J, BOULOS M.Thermal Spray Fundamentals: from Powder to Part. New York: Springer Science+Business Media, 2014. |
[7] | FAUCHAIS P.Understanding plasma spraying.J. Phys. D Appl. Phys., 2004, 37(9): 86-108. |
[8] | VARDELLE M, VARDELLE A, DUSSOUBS B, et al.Influence of injector geometry on particle trajectories: analysis of particle dynamics in the injector and plasma jet.Thermal Spray, Vols 1 and 2, 1998: 887-894. |
[9] | LI H P, CHEN X.Three-dimensional simulation of a plasma jet with transverse particle and carrier gas injection.Thin Solid Films, 2001, 390(1/2): 175-180. |
[10] | XIONG H B, ZHENG L L, SAMPATH S, et al.Three-dimensional simulation of plasma spray: effects of carrier gas flow and particle injection on plasma jet and entrained particle behavior.Int. J. Heat Mass Tran., 2004, 47(24): 5189-5200. |
[11] | YUGESWARAN S, KOBAYASHI A, SELVAN B, et al.In-flight behavior of lanthanum zirconate (La2Zr2O7) particles in gas tunnel type plasma jet and its coating properties.Vacuum, 2013, 88: 139-143. |
[12] | ELSEBAEI A, HEBERLEIN J, ELSHAER M, et al.Comparison of in-flight particle properties, splat formation, and coating microstructure for regular and nano-ysz powders.J. Therm Spray Techn., 2010, 19(1/2): 2-10. |
[13] | OERLIKON METCO.Thermal spray materials guide. , April 2015. |
[14] | KUMAR A, GU S, TABBARA H, et al.Study of impingement of hollow ZrO2 droplets onto a substrate.Surf. Coat. Tech., 2013, 220: 164-169. |
[15] | KANOUFF M P, NEISER R A, ROEMER T J.Surface roughness of thermal spray coatings made with off-normal spray angles.J. Therm. Spray Techn., 1998, 7(2): 219-228. |
[16] | LEIGH S H, BERNDT C C.Evaluation of off-angle thermal spray.Surf. Coat. Tech., 1997, 89(3): 213-224. |
[17] | ALAVI S, PASSANDIDEH-FARD M, MOSTAGHIMI J.Simulation of semi-molten particle impacts including heat transfer and phase change.J. Therm. Spray Techn., 2012, 21(6): 1278-1293. |
[18] | ZHU Z H, KAMNIS S, GU S.Numerical study of molten and semi-molten ceramic impingement by using coupled Eulerian and Lagrangian method.Acta Mater., 2015, 90: 77-87. |
[19] | GOUTIER S, VARDELLE M, FAUCHAIS P.Comparison between metallic and ceramic splats: influence of viscosity and kinetic energy on the particle flattening.Surf. Coat. Tech., 2013, 235: 657-668. |
[20] | CHEN D, WANG Y, BAI Y, et al.Effect of reynolds number of molten particle on splat formation in plasma spraying.J. Inorg. Mater., 2015, 30(1): 65-70. |
[21] | GOUTIER S, VARDELLE M, LABBE J C, et al.Flattening and cooling of millimeter- and micrometer-sized alumina drops.J. Therm. Spray Techn., 2011, 20(1/2): 59-67. |
[22] | ESCURE C, VARDELLE M, FAUCHAIS P.Experimental and theoretical study of the impact of alumina droplets on cold and hot substrates.Plasma Chem. Plasma P., 2003, 23(2): 185-221. |
[23] | LI L, VAIDYA A, SAMPATH S, et al.Particle characterization and splat formation of plasma sprayed zirconia.J. Therm. Spray Techn., 2006, 15(1): 97-105. |
[24] | WANG Y Z, HUA J J, LIU Z W, et al.Melting index characterization and thermal conductivity model of plasma sprayed YSZ coatings.J. Eur. Ceram. Soc., 2012, 32(14): 3701-3707. |
[25] | FUKUMOTO M, HUANG Y.Flattening mechanism in thermal sprayed nickel particle impinging on flat substrate surface.J. Therm. Spray Techn., 1999, 8(3): 427-432. |
[26] | MOREAU C, GOUGEON P, LAMONTAGNE M.Influence of substrate preparation on the flattening and cooling of plasma- sprayed particles.J. Therm. Spray Techn., 1995, 4(1): 25-33. |
[27] | FAUCHAIS P, VARDELLE M, VARDELLE A, et al.Parameters controlling the generation and properties of plasma sprayed zirconia coatings.Plasma Chem. Plasma P., 1996, 16(1): 99-125. |
[28] | FUKUMOTO M, NISHIOKA E, MATSUBARA T.Effect of interface wetting on flattening of freely fallen metal droplet onto flat substrate surface.J. Therm. Spray Techn., 2002, 11(1): 69-74. |
[29] | FAUCHAIS P, FUKUMOTO M, VARDELLE A, et al.Knowledge concerning splat formation: an invited review.J. Therm. Spray Techn., 2004, 13(3): 337-360. |
[30] | MCDONALD A, MOREAU C, CHANDRA S.Thermal contact resistance between plasma-sprayed particles and flat surfaces.Int. J. Heat Mass Tran., 2007, 50(9/10): 1737-1749. |
[31] | TRAN A T T, HYLAND M M. The role of substrate surface chemistry on splat formation during plasma spray deposition by experiments and simulations.J. Therm. Spray Techn., 2010, 19(1/2): 11-23. |
[32] | ZHENG Y Z, LI Q, ZHENG Z H,et al.Modeling the impact, flattening and solidification of a molten droplet on a solid substrate during plasma spraying.Appl. Surf. Sci., 2014, 317: 526-533. |
[33] | FUKUMOTO M, OHGITANI D, YASUI T.Effect of substrate surface change on flattening behaviour of thermal sprayed particles.Mater Trans., 2004, 45(6): 1869-1873. |
[34] | FUKUMOTO M, NISHIOKA E, MATSUBARA T.Flattening and solidification behavior of a metal droplet on a flat substrate surface held at various temperatures.Surf. Coat. Tech., 1999, 120: 131-137. |
[35] | JIANG X Y, WAN Y P, HERMAN H, et al.Role of condensates and adsorbates on substrate surface on fragmentation of impinging molten droplets during thermal spray.Thin Solid Films, 2001, 385(1/2): 132-141. |
[36] | LI C J, LI J L.Evaporated-gas-induced splashing model for splat formation during plasma spraying.Surf. Coat. Tech., 2004, 184(1): 13-23. |
[37] | LI H, COSTIL S, LIAO H L, et al.Effects of surface conditions on the flattening behavior of plasma sprayed Cu splats.Surf. Coat. Tech., 2006, 200(18/19): 5435-5446. |
[38] | TRAN A T T, HYLAND M M, SHINODA K, et al. Influence of substrate surface conditions on the deposition and spreading of molten droplets.Thin Solid Films, 2011, 519(8): 2445-2456. |
[39] | MCDONALD A, MOREAU C, CHANDRA S.Effect of substrate oxidation on spreading of plasma-sprayed nickel on stainless steel.Surf. Coat. Tech., 2007, 202(1): 23-33. |
[40] | PARIZI H B, ROSENZWEIG L, MOSTAGHIMI J, et al.Numerical simulation of droplet impact on patterned surfaces.J. Therm. Spray Techn., 2007, 16(5/6): 713-721. |
[41] | SHINODA K, RAESSI M, MOSTAGHIMI J, et al.Effect of substrate concave pattern on splat formation of yttria-stabilized zirconia in atmospheric plasma spraying.J. Therm. Spray Techn., 2009, 18(4): 609-618. |
[42] | KHAN A N, LU J, LIAO H.Effect of residual stresses on air plasma sprayed thermal barrier coatings.Surf. Coat. Tech., 2003, 168(2-3): 291-299. |
[43] | CHRISTOULIS D K, PANTELIS D I, DE DAVE-FABREGUE N, et al. Effect of substrate temperature and roughness on the solidification of copper plasma sprayed droplets.Mat. Sci. Eng. a-Struct., 2008, 485(1/2): 119-129. |
[44] | LI D C, ZHAO H Y, ZHONG X H, et al.Effect of the bond coating surface morphology on ceramic splat construction.J. Therm. Spray Techn., 2015, 24(8): 1450-1458. |
[45] | SYED A A, DENOIRJEAN A, HANNOYER B, et al.Influence of substrate surface conditions on the plasma sprayed ceramic and metallic particles flattening.Surf. Coat. Tech., 2005, 200(7): 2317-2331. |
[46] | SALIMIJAZI H R, PERSHIN L, COYLE T W, et al.Effect of droplet characteristics and substrate surface topography on the final morphology of plasma-sprayed zirconia single splats.J. Therm. Spray Techn., 2007, 16(2): 291-299. |
[47] | LI C J, LI C X, YANG G J, et al.Examination of substrate surface melting-induced splashing during splat formation in plasma spraying.J. Therm. Spray Techn., 2006, 15(4): 717-724. |
[48] | BROSSARD S, MUNROE P R, TRAN A T T, et al. Study of the splat microstructure, splat-substrate interface, and the effects of substrate heating on the splat formation for ni-cr particles plasma sprayed on to aluminum substrates.J. Therm. Spray Techn., 2010, 19(5): 1115-1130. |
[1] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
[2] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[3] | CHEN Qiang, BAI Shuxin, YE Yicong. Highly Thermal Conductive Silicon Carbide Ceramics Matrix Composites for Thermal Management: a Review [J]. Journal of Inorganic Materials, 2023, 38(6): 634-646. |
[4] | LIN Junliang, WANG Zhanjie. Research Progress on Ferroelectric Superlattices [J]. Journal of Inorganic Materials, 2023, 38(6): 606-618. |
[5] | NIU Jiaxue, SUN Si, LIU Pengfei, ZHANG Xiaodong, MU Xiaoyu. Copper-based Nanozymes: Properties and Applications in Biomedicine [J]. Journal of Inorganic Materials, 2023, 38(5): 489-502. |
[6] | YUAN Jingkun, XIONG Shufeng, CHEN Zhangwei. Research Trends and Challenges of Additive Manufacturing of Polymer-derived Ceramics [J]. Journal of Inorganic Materials, 2023, 38(5): 477-488. |
[7] | DU Jianyu, GE Chen. Recent Progress in Optoelectronic Artificial Synapse Devices [J]. Journal of Inorganic Materials, 2023, 38(4): 378-386. |
[8] | YANG Yang, CUI Hangyuan, ZHU Ying, WAN Changjin, WAN Qing. Research Progress of Flexible Neuromorphic Transistors [J]. Journal of Inorganic Materials, 2023, 38(4): 367-377. |
[9] | YOU Junqi, LI Ce, YANG Dongliang, SUN Linfeng. Double Dielectric Layer Metal-oxide Memristor: Design and Applications [J]. Journal of Inorganic Materials, 2023, 38(4): 387-398. |
[10] | CHEN Kunfeng, HU Qianyu, LIU Feng, XUE Dongfeng. Multi-scale Crystallization Materials: Advances in in-situ Characterization Techniques and Computational Simulations [J]. Journal of Inorganic Materials, 2023, 38(3): 256-269. |
[11] | ZHANG Chaoyi, TANG Huili, LI Xianke, WANG Qingguo, LUO Ping, WU Feng, ZHANG Chenbo, XUE Yanyan, XU Jun, HAN Jianfeng, LU Zhanwen. Research Progress of ScAlMgO4 Crystal: a Novel GaN and ZnO Substrate [J]. Journal of Inorganic Materials, 2023, 38(3): 228-242. |
[12] | QI Zhanguo, LIU Lei, WANG Shouzhi, WANG Guogong, YU Jiaoxian, WANG Zhongxin, DUAN Xiulan, XU Xiangang, ZHANG Lei. Progress in GaN Single Crystals: HVPE Growth and Doping [J]. Journal of Inorganic Materials, 2023, 38(3): 243-255. |
[13] | LIN Siqi, LI Airan, FU Chenguang, LI Rongbing, JIN Min. Crystal Growth and Thermoelectric Properties of Zintl Phase Mg3X2 (X=Sb, Bi) Based Materials: a Review [J]. Journal of Inorganic Materials, 2023, 38(3): 270-279. |
[14] | LIU Yan, ZHANG Keying, LI Tianyu, ZHOU Bo, LIU Xuejian, HUANG Zhengren. Electric-field Assisted Joining Technology for the Ceramics Materials: Current Status and Development Trend [J]. Journal of Inorganic Materials, 2023, 38(2): 113-124. |
[15] | XIE Bing, CAI Jinxia, WANG Tongtong, LIU Zhiyong, JIANG Shenglin, ZHANG Haibo. Research Progress of Polymer-based Multilayer Composite Dielectrics with High Energy Storage Density [J]. Journal of Inorganic Materials, 2023, 38(2): 137-147. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||