Journal of Inorganic Materials ›› 2017, Vol. 32 ›› Issue (5): 476-482.DOI: 10.15541/jim20160408
• Orginal Article • Previous Articles Next Articles
LI Wei, ZHANG Yuan-Jie, WANG Xuan-Peng, NIU Chao-Jiang, AN Qin-You, MAI Li-Qiang
Received:
2016-07-05
Revised:
2016-08-31
Published:
2017-05-20
Online:
2017-05-02
About author:
LI Wei. E-mail: whlglw90@163.com
CLC Number:
LI Wei, ZHANG Yuan-Jie, WANG Xuan-Peng, NIU Chao-Jiang, AN Qin-You, MAI Li-Qiang. Synthesis and Electrochemical Performance of LiMn0.6Fe0.4PO4/C Cathode for Lithium-ion Batteries[J]. Journal of Inorganic Materials, 2017, 32(5): 476-482.
Fig. 4 CV curves of S-650 at scan rate of 0.1 mV/s (a); Cycling performance of S-650,S-600 and S-700 at 0.2 C rate (b); Rate capabilities of S-650,S-600 and S-700 (c); Cycling performance of S-650 at 0.5 C rate (d); Charge-discharge curves of S-650 at different current densities (e)
Sample | Li | Mn | Fe | P |
---|---|---|---|---|
S-600 | 0.91 | 0.59 | 0.41 | 1.00 |
S-650 | 0.88 | 0.68 | 0.43 | 1.00 |
S-700 | 0.90 | 0.60 | 0.41 | 1.00 |
Table1 ICP elemental analyses of S-600, S-650 and S-700
Sample | Li | Mn | Fe | P |
---|---|---|---|---|
S-600 | 0.91 | 0.59 | 0.41 | 1.00 |
S-650 | 0.88 | 0.68 | 0.43 | 1.00 |
S-700 | 0.90 | 0.60 | 0.41 | 1.00 |
Fig. 5 Cycling performance (a) and charge-discharge curves (b) of S-650 at 1 C rate; EIS plots of S-650, S-600 and S-700 in the frequency range from 0.01 Hz to 100 kHz (c)
[1] | SARAVANAN K, RAMAR V, BALAYA P, et al.Li(MnxFe1-x)PO4/C (x=0.5, 0.75 and 1) nanoplates for lithium storage application.Journal of Materials Chemistry, 2011, 21(38): 14925-14935. |
[2] | YANG W C, BI Y J, QIN Y P, et al.LiMn0.8Fe0.2PO4/C cathode material synthesized via co-precipitation method with superior high-rate and low-temperature performances for lithium-ion batteries.Journal of Power Sources, 2015, 275: 785-791. |
[3] | NGUYEN TTD, DIMESSO L, CHERKASHININ G, et al.Synthesis and characterization of LiMn1-xFexPO4/carbon nanotubes composites as cathodes for Li-ion batteries.Ionics, 2013, 19(9): 1229-1240. |
[4] | CHEN J, ZhAO N, LI G D, et al. High-rate and long-term cycling capabilities of LiFe0.4Mn0.6PO4/C composite for lithium-ion batteries.Journal of Solid State Electrochemistry, 2015, 19(5): 1535-1540. |
[5] | MIAO C, BAI P F, JIANG Q Q, et al.A novel synthesis and characterization of LiFePO4 and LiFePO4/C as a cathode material for lithium-ion battery.Journal of Power Sources, 2014, 246: 232-238. |
[6] | YANG S L, HU M J, XI L J, et al.Solvothermal synthesis of monodisperse LiFePO4 micro hollow spheres as high performance cathode material for lithium ion batteries.ACS Applied Materials & Interfaces, 2013, 5(18): 8961-8967. |
[7] | XU G, LI F, TAO Z H, et al.Monodispersed LiFePO4@C core-shell nanostructures for a high power Li-ion battery cathode.Journal of Power Sources, 2014, 246: 696-702. |
[8] | WANG T, YIN Y, LIU H W.Synthesis of FePO4 from Fe2O3 and its application in synthesizing cathode material LiFePO4.Journal of Inorganic Materials, 2013, 28(2): 207-211. |
[9] | QIN X Z, YANG G, GAO J, et al.LiFePO4/C cathode material modified by polyacrylamide.Journal of Inorganic Materials, 2016, 31(5): 517-522. |
[10] | GUO H, WU C Y, XIE J, et al.Controllable synthesis of high-performance LiMnPO4 nanocrystals by a facile one-spot solvothermal process.Journal of Materials Chemistry A, 2014, 2(27): 10581-10588. |
[11] | WANG Y R, YANG Y F, YANG Y B, et al.Enhanced electrochemical performance of unique morphological cathode material prepared by solvothermal method.Solid State Communications, 2010, 150(1/2): 81-85. |
[12] | QIN Z H, ZHOU X F, XIA Y G, et al.Morphology controlled synthesis and modification of high-performance LiMnPO4 cathode materials for Li-ion batteries.Journal of Materials Chemistry, 2012, 22(39): 21144-21153. |
[13] | LI L E, LIU J, CHEN L, et al.Effect of different carbon sources on the electrochemical properties of rod-like LiMnPO4-C nanocomposites.RSC Advances, 2013, 3(19): 6847-6852. |
[14] | WANG Y M, WANG F, WANG G J.Sol-Gel synthesis and electrochemical performance of LiMnPO4/C cathode material.Journal of Inorganic Materials, 2013, 28(4): 415-419. |
[15] | ZHONG Y J, LI J T, WU Z G, et al.LiMn0.5Fe0.5PO4 solid solution materials synthesized by rheological phase reaction and their excellent electrochemical performances as cathode of lithium ion battery.Journal of Power Sources, 2013, 234: 217-222. |
[16] | ZHANG B, WANG X J, LI H, et al.Electrochemical performances of LiFe1-xMnxPO4 with high Mn content.Journal of Power Sources, 2011, 196(16): 6992-6996. |
[17] | RAVNSBAEK DB, XIANG K, XING W, et al.Extended solid solutions and coherent transformations in nanoscale olivine cathodes.Nano Letters, 2014, 14(3): 1484-1491. |
[18] | HONG Y, TANG Z L, HONG Z J, et al.LiMn1-xFexPO4 (x = 0, 0.1, 0.2) nanorods synthesized by a facile solvothermal approach as high performance cathode materials for lithium-ion batteries.Journal of Power Sources, 2014, 248: 655-659. |
HUANG Y P, LI X, CHEN Z, et al. Effect of sintering temperature on electrochemical performance of LiFe0.4Mn0.6PO4/C cathode materials. Materials Research Innovations, 2014, 18(4): S4-2-5. | |
[19] | SU J, WU X L, GUO Y G.Preparation and electrochemical properties of LiMn0.8Fe0.2PO4/C nanocomposite.Journal of Inorganic Materials, 2013, 28(11): 1248-1254. |
[20] | CHI Z X, ZHANG W, WANG X S, et al.Accurate surface control of core-shell structured LiMn0.5Fe0.5PO4@C for improved battery performance.Journal of Materials Chemistry A, 2014, 2(41): 17359-17365. |
[21] | HUANG Y P, TAO T, CHEN Z, et al.Excellent electrochemical performance of LiFe0.4Mn0.6PO4microspheres produced using a double carbon coating process.Journal of Materials Chemistry A, 2014, 2(44): 18831-18837. |
[22] | BEZZA I, KAUS M, HEINZMANN R, et al.Mechanism of the delithiation/lithiation process in LiFe0.4Mn0.6PO4: in situ and ex situ investigations on long-range and local structures.The Journal of Physical Chemistry C, 2015, 119(17): 9016-9024. |
[23] | ZHOU X, DENG Y F, WAN L N, et al.A surfactant-assisted synthesis route for scalable preparation of high performance of LiFe0.15Mn0.85PO4/C cathode using bimetallic precursor.Journal of Power Sources, 2014, 265: 223-230. |
[24] | YI H H, HU C L, FANG H S, et al.Optimized electrochemical performance of LiMn0.9Fe0.1-xMgxPO4/C for lithium ion batteries.Electrochimica Acta, 2011, 56: 4052-4057. |
[25] | DUAN J G, HU G R, CAO Y B, et al.Synthesis of high-performance Fe-Mg-co-doped LiMnPO4/C via a mechano-chemical liquid-phase activation technique.Ionics, 2016, 22: 609-619. |
[26] | ZONG J, PENG Q W, YU J P, et al.Novel precursor of Mn(PO3(OH))·3H2O for synthesizing LiMn0.5Fe0.5PO4 cathode material.Journal of Power Sources, 2013, 228: 214-219. |
[27] | NIU C J, MENG J S, WANG X P, et al.General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis.Nature Communications, 2015, 6: 7402. |
[28] | WANG X P, NIU C J, MENG J S, et al.Novel K3V2(PO4)3/C bundled nanowires as superior sodium-ion battery electrode with ultrahigh cycling stability.Advanced Energy Materials, 2015, 5(17): 1500716. |
[1] | KONG Guoqiang, LENG Mingzhe, ZHOU Zhanrong, XIA Chi, SHEN Xiaofang. Sb Doped O3 Type Na0.9Ni0.5Mn0.3Ti0.2O2 Cathode Material for Na-ion Battery [J]. Journal of Inorganic Materials, 2023, 38(6): 656-662. |
[2] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[3] | LI Tao, CAO Pengfei, HU Litao, XIA Yong, CHEN Yi, LIU Yuejun, SUN Aokui. NH4+ Assisted Interlayer-expansion of MoS2: Preparation and Its Zinc Storage Performance [J]. Journal of Inorganic Materials, 2023, 38(1): 79-86. |
[4] | WANG Yang, FAN Guangxin, LIU Pei, YIN Jinpei, LIU Baozhong, ZHU Linjian, LUO Chengguo. Microscopic Mechanism of K+ Doping on Performance of Lithium Manganese Cathode for Li-ion Battery [J]. Journal of Inorganic Materials, 2022, 37(9): 1023-1029. |
[5] | LI Wenbo, HUANG Minsong, LI Yueming, LI Chilin. CoS2 as Cathode Material for Magnesium Batteries with Dual-salt Electrolytes [J]. Journal of Inorganic Materials, 2022, 37(2): 173-181. |
[6] | LIU Fangfang, CHUAN Xiuyun, YANG Yang, LI Aijun. Influence of N/S Co-doping on Electrochemical Property of Brucite Template Carbon Nanotubes [J]. Journal of Inorganic Materials, 2021, 36(7): 711-717. |
[7] | ZHAN Jing,XU Changfan,LONG Yiyu,LI Qihou. Bi2Mn4O10: Preparation by Polyacrylamide Gel Method and Electrochemical Performance [J]. Journal of Inorganic Materials, 2020, 35(7): 827-833. |
[8] | ZHU Zeyang,WEI Jishi,HUANG Jianhang,DONG Xiangyang,ZHANG Peng,XIONG Huanming. Preparation of ZnO Nanorods with Lattice Vacancies and Their Application in Ni-Zn Battery [J]. Journal of Inorganic Materials, 2020, 35(4): 423-430. |
[9] | GUO Si-Lin, KANG Shuai, LU Wen-Qiang. Ge Nanoparticles in MXene Sheets: One-step Synthesis and Highly Improved Electrochemical Property in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2020, 35(1): 105-111. |
[10] | LI Xue-Lin, ZHU Jian-Feng, JIAO Yu-Hong, HUANG Jia-Xuan, ZHAO Qian-Nan. Manganese Dioxide Morphology on Electrochemical Performance of Ti3C2Tx@MnO2 Composites [J]. Journal of Inorganic Materials, 2020, 35(1): 119-125. |
[11] | SUN Xiao-Lu,SONG Xiao-Fei,LIU Yan-Hua,WU Yue,CAI Yi-Bing,ZHAO Hong-Mei. Electrospun FeMnO3 Nanofibrous Mats: Preparation and Electrochemical Property [J]. Journal of Inorganic Materials, 2019, 34(7): 709-714. |
[12] | Yi TAN, Kai WANG. Silicon-based Anode Materials Applied in High Specific Energy Lithium-ion Batteries: a Review [J]. Journal of Inorganic Materials, 2019, 34(4): 349-357. |
[13] | HU Xi, LIU Hong-Bo, XIA Xiao-Hong, GU Zhi-Qiang. Polyaniline-carbon Pillared Graphene Composite: Preparation and Electrochemical Performance [J]. Journal of Inorganic Materials, 2019, 34(2): 145-151. |
[14] | WANG Wu-Lian, ZHANG Jun, WANG Qiu-Shi, CHEN Liang, LIU Zhao-Ping. High-quality Fe4[Fe(CN)6]3 Nanocubes: Synthesis and Electrochemical Performance as Cathode Material for Aqueous Sodium-ion Battery [J]. Journal of Inorganic Materials, 2019, 34(12): 1301-1308. |
[15] | WANG Jia-Hu, WANG Wen-Xin, DU Peng, HU Fang-Dong, JIANG Xiao-Lei, YANG Jian. Synthesis of Na3V2(PO4)2F3@V2O5-x as Cathode Material for Sodium-ion Battery [J]. Journal of Inorganic Materials, 2019, 34(10): 1097-1102. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||