Journal of Inorganic Materials ›› 2017, Vol. 32 ›› Issue (5): 449-458.DOI: 10.15541/jim20160380
• Orginal Article • Next Articles
HE Fei1,2, LI Ya1,2, LUO Jin1,2, FANG Min-Han1,2, HE Xiao-Dong1,2
Received:
2016-06-16
Revised:
2016-08-30
Published:
2017-05-20
Online:
2017-05-02
About author:
HE Fei. E-mail: hefei@hit.edu.cn
CLC Number:
HE Fei, LI Ya, LUO Jin, FANG Min-Han, HE Xiao-Dong. Development of SiO2/C and SiC/C Composites Featuring Aerogel Structures[J]. Journal of Inorganic Materials, 2017, 32(5): 449-458.
Precursors | Temperature/ ℃ | Density/ (g•cm-3) | Ratio of porosity/ % | specific surface area/(m2•g-1) | Pore volume/ (cm3•g-1) | Average pore size/nm |
---|---|---|---|---|---|---|
PhTMS+TMOS (molar ratio=1:4)[ | as-prepared 1000 | 0.48 0.58 | - | 987 581 | - | 2.8 2.5 |
TEOS+PDMS[ | 1200 | 0.30 | - | 198.04 | 0.684 | 5.6 |
MDMS+TEOS (molar ratio=1:1)[ | as-prepared 800 | - | - | 425.5 275.0 | 1.87 - | 17.59 - |
BTEE[ | as-prepared 1000 | - | - | 1022 69 | 0.53 0.02 | - |
BTME[ | as-prepared 1000 | - | - | 867 735 | 0.74 0.36 | - |
TEOS+TBOT+PDMS[ | as-prepared 400 600 800 1000 | - | - | 1.1 300.1 515.2 283.1 1.4 | 1.7 2.8 2.7 1.7 1.1 | - |
BTEBP[ | 300 1300 1400 1500 | 0.264 0.260 0.265 0.266 | 83 91 91 91 | 1190 1050 818 796 | 0.916 0.802 0.703 0.639 | - |
MTMS+GPYMS[ | as-prepared 1000 as-prepared 1000 | 0.31 0.61 0.18 0.49 | 78 - 87 - | 464 207 618 150 | 1.24 0.98 1.07 0.52 | 11 18 7 14 |
PHMS[ | as-prepared 1000 | - | - | 227 180 | 1.37 1.09 | 52 24 |
MTES[ | as-prepared 1000 | - | - | 727 168 | 1.47 0.80 | 8.0 18.5 |
PDMS+TrEOS[ | as-prepared 1100 | - | 59-69 1.6 | 405-583 109 | - | 3.2-5.0 <2 |
MDES+TrEOS[ | as-prepared 1000 | - | 88±2 50±1 | 0.45±0.02 0.31±0.02 | - |
Table 1 Porous parameters of SiCO prepared by different siloxane precursors
Precursors | Temperature/ ℃ | Density/ (g•cm-3) | Ratio of porosity/ % | specific surface area/(m2•g-1) | Pore volume/ (cm3•g-1) | Average pore size/nm |
---|---|---|---|---|---|---|
PhTMS+TMOS (molar ratio=1:4)[ | as-prepared 1000 | 0.48 0.58 | - | 987 581 | - | 2.8 2.5 |
TEOS+PDMS[ | 1200 | 0.30 | - | 198.04 | 0.684 | 5.6 |
MDMS+TEOS (molar ratio=1:1)[ | as-prepared 800 | - | - | 425.5 275.0 | 1.87 - | 17.59 - |
BTEE[ | as-prepared 1000 | - | - | 1022 69 | 0.53 0.02 | - |
BTME[ | as-prepared 1000 | - | - | 867 735 | 0.74 0.36 | - |
TEOS+TBOT+PDMS[ | as-prepared 400 600 800 1000 | - | - | 1.1 300.1 515.2 283.1 1.4 | 1.7 2.8 2.7 1.7 1.1 | - |
BTEBP[ | 300 1300 1400 1500 | 0.264 0.260 0.265 0.266 | 83 91 91 91 | 1190 1050 818 796 | 0.916 0.802 0.703 0.639 | - |
MTMS+GPYMS[ | as-prepared 1000 as-prepared 1000 | 0.31 0.61 0.18 0.49 | 78 - 87 - | 464 207 618 150 | 1.24 0.98 1.07 0.52 | 11 18 7 14 |
PHMS[ | as-prepared 1000 | - | - | 227 180 | 1.37 1.09 | 52 24 |
MTES[ | as-prepared 1000 | - | - | 727 168 | 1.47 0.80 | 8.0 18.5 |
PDMS+TrEOS[ | as-prepared 1100 | - | 59-69 1.6 | 405-583 109 | - | 3.2-5.0 <2 |
MDES+TrEOS[ | as-prepared 1000 | - | 88±2 50±1 | 0.45±0.02 0.31±0.02 | - |
Fig. 5 Geometric structure and heat transfer analysis of macro-porous SiCO ceramics[66] (a) Cubic array of intersecting spherical structure; (b) Heat transfer in two contact spherical particles; (c) Heat transfer in sphere-gas-sphere structure
Property | Value | Comments | Values for vitreous silica |
---|---|---|---|
Density/(g•cm-3) | 2.35 | 2.20 | |
Coefficient of the thermal expansion/K-1 | 3.14×10-6 | Average of many samples on cooling between 1000℃ and 100℃; hot-pressed | 0.5 |
Vickers hardness/(kg•mm-2) | 855 704 | 200 g load 1000 g load | 600-700 |
Critical stress intensity factor /(MPa•m1/2) | 1.8 | 1000 g load | 1 |
Fracture strength/MPa | 153±20 | 3-point bending of 0.74 mm diameter fibers | |
385±227 | 3-point bending of bars | ||
Young's elastic modulus/GPa | 97.9 | 70 | |
Index of refraction | 1.58 | At 0.5893 μm | 1.46 |
Glass transition/℃ | 1350 | Viscosity of 1013 P | 1190 |
Dielectric constant | 4.4 | 25℃, 10 to 107 Hz pyrolyzed to 1100℃ | 4 |
Dielectric loss tangent | 0.1 | 25℃, 10 to 107 Hz pyrolyzed to 1100℃ | 10-4 |
Electrical conductivity /(Ω·cm) -1 | 4×10-13 | 25℃, pyrolyzed to 1100℃ | ~10-22 |
Table 2 Properties of SiCO glass and vitreous silica
Property | Value | Comments | Values for vitreous silica |
---|---|---|---|
Density/(g•cm-3) | 2.35 | 2.20 | |
Coefficient of the thermal expansion/K-1 | 3.14×10-6 | Average of many samples on cooling between 1000℃ and 100℃; hot-pressed | 0.5 |
Vickers hardness/(kg•mm-2) | 855 704 | 200 g load 1000 g load | 600-700 |
Critical stress intensity factor /(MPa•m1/2) | 1.8 | 1000 g load | 1 |
Fracture strength/MPa | 153±20 | 3-point bending of 0.74 mm diameter fibers | |
385±227 | 3-point bending of bars | ||
Young's elastic modulus/GPa | 97.9 | 70 | |
Index of refraction | 1.58 | At 0.5893 μm | 1.46 |
Glass transition/℃ | 1350 | Viscosity of 1013 P | 1190 |
Dielectric constant | 4.4 | 25℃, 10 to 107 Hz pyrolyzed to 1100℃ | 4 |
Dielectric loss tangent | 0.1 | 25℃, 10 to 107 Hz pyrolyzed to 1100℃ | 10-4 |
Electrical conductivity /(Ω·cm) -1 | 4×10-13 | 25℃, pyrolyzed to 1100℃ | ~10-22 |
[1] | WHITE R J, BRUN N, BUDARIN V L, et al.Always look on the “light” side of life: sustainable carbon aerogels. ChemSusChem, 2014, 7(3): 670-689. |
[2] | HUSING N, SCHUBERT U.Aerogels-airy materials: chemistry, structure, and properties.Angewandte Chemie International Edition, 1998, 37(1/2): 22-45. |
[3] | PIERRE A C, PAJONK G M.Chemistry of aerogels and their applications. Chemical Reviews, 2002, 102(11): 4243-4266. |
[4] | RAO A V, BHAGAT S D, HIRASHIMA H, et al.Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor. Journal of Colloid and Interface Science, 2006, 300(1): 279-285. |
[5] | RANDALL J P, MEADOR M A B, JANA S C. Tailoring mechanical properties of aerogels for aerospace applications.ACS Applied Materials & Interfaces, 2011, 3(3): 613-626. |
[6] | ANTONIETTI M, FECHLERN, FELLINGER T P. Carbon aerogels and monoliths: control of porosity and nanoarchitecture via Sol-Gel routes.Chemistry of Materials, 2013, 26(1): 196-210. |
[7] | MALEKI H, DURAES L, PORTUGAL A.An overview on silica aerogels synthesis and different mechanical reinforcing strategies.Journal of Non-Crystalline Solids, 2014, 385(2): 55-74. |
[8] | WANG Z, WANG D, QIAN Z, et al.Robust superhydrophobic bridged silsesquioxane aerogels with tunable performances and their applications.ACS Applied Materials & Interfaces, 2015, 7(3): 2016-2024. |
[9] | LEE D, STEVENS P C, ZENG S Q, et al.Thermal characterization of carbon-opacified silica aerogels.Journal of Non-Crystalline Solids, 1995, 186(2): 285-290. |
[10] | ZHOU X F, CUI S, LIU Y, et al.Adsorption capacity of hydrophobic SiO2 aerogel/activated carbon composite materials for TNT.Science China Technological Sciences, 2013, 56(7): 1767-1772. |
[11] | KONG Y, ZHONG Y, SHEN X, et al.Synthesis and characterization of monolithic carbon/silicon carbide composite aerogels.Journal of Porous Materials, 2013, 20(4): 845-849. |
[12] | KONG Y, SHEN X, CUI S, et al.Preparation of monolith SiC aerogel with high surface area and large pore volume and the structural evolution during the preparation.Ceramics International, 2014, 40(6): 8265-8271. |
[13] | HASEGAWA G, KANAMORI K, NAKANISHI K, et al.A new route to monolithic macroporous SiC/C composites from biphenylene-bridged polysilsesquioxane gels.Chemistry of Materials, 2010, 22(8): 2541-2547. |
[14] | ERMAKOVA M A, ERMAKOV D Y, KUVSHINOV G G, et al.Synthesis of high surface area silica gels using porous carbon matrices.Journal of Porous Materials, 2000, 7(4): 435-441. |
[15] | YE L, JI Z H, HAN W J, et al.Synthesis and characterization of silica/carbon composite aerogels.Journal of the American Ceramic Society, 2010, 93(4): 1156-1163. |
[16] | SCHAEFER D W, PEKALA R, BEAUCAGE G.Origin of porosity in resorcinol-formaldehyde aerogels.Journal of Non-Crystalline Solids, 1995, 186(2): 159-167. |
[17] | TAMON H, KITAMURA T, OKAZAKI M.Preparation of silica aerogel from TEOS.Journal of Colloid and Interface Science, 1998, 197(2): 353-359. |
[18] | DU A, ZHOU B, ZHANG Z, et al.A special material or a new state of matter: a review and reconsideration of the aerogel.Materials, 2013, 6(3): 941-968. |
[19] | AGUADO-SERRANO J, ROJAS-CERVANTES M L, LOPEZ- PEINADO A J, et al. Silica/C composites prepared by the Sol-Gel method. Influence of the synthesis parameters on textural characteristics.Microporous and Mesoporous Materials, 2004, 74(74): 111-119. |
[20] | LI X, CHEN X, SONG H.Synthesis of β-SiC nanostructures via the carbothermal reduction of resorcinol-formaldehyde/SiO2 hybrid aerogels.Journal of Materials Science, 2009, 44(17): 4661-4667. |
[21] | XU H, ZHANG H, HUANG Y, et al.Porous carbon/silica composite monoliths derived from resorcinol-formaldehyde/TEOS.Journal of Non-Crystalline Solids, 2010, 356(20/21/22): 971-976. |
[22] | CHEN K, BAO Z, DU A, et al.One-pot synthesis, characterization and properties of acid-catalyzed resorcinol/formaldehyde cross- linked silica aerogels and their conversion to hierarchical porous carbon monoliths.Journal of Sol-Gel Science and Technology, 2012, 62(3): 294-303. |
[23] | CHEN K, BAO Z, DU A, et al.Synthesis of resorcinol-formaldehyde/ silica composite aerogels and their low-temperature conversion to mesoporous silicon carbide.Microporous and Mesoporous Materials, 2012, 149(1): 16-24. |
[24] | KONG Y, ZHONG Y, SHEN X, et al.Facile synthesis of resorcinol-formaldehyde/silica composite aerogels and their transformation to monolithic carbon/silica and carbon/silicon carbide composite aerogels.Journal of Non-Crystalline Solids, 2012, 358(23): 3150-3155. |
[25] | KONG Y, ZHONG Y, SHEN X, et al.Synthesis of monolithic mesoporous silicon carbide from resorcinol-formaldehyde/silica composites.Materials Letters, 2013, 99(20): 108-110. |
[26] | KONG Y, ZHONG Y, SHEN X, et al.Effect of silica sources on nanostructures of resorcinol-formaldehyde/silica and carbon/silicon carbide composite aerogels.Microporous and Mesoporous Materials, 2014, 197(10): 77-82. |
[27] | ZHMUD B V, SONNEFELD J.Aminopolysiloxane gels: production and properties.Journal of Non-crystalline Solids, 1996, 195(1/2): 16-27. |
[28] | YAO J, WANG H, ZHANG X, et al.Role of pores in the carbothermal reduction of carbon-silica nanocomposites into silicon carbide nanostructures.The Journal of Physical Chemistry C, 2007, 111(2): 636-641. |
[29] | KIM H J, KIM J H, KIM W I, et al.Nanoporous phloroglucinol- formaldehyde carbon aerogels for electrochemical use.Korean Journal of Chemical Engineering, 2005, 22(22): 740-744. |
[30] | SONG L, FENG D, LEE H J, et al.Stabilizing surfactant templated cylindrical mesopores in polymer and carbon films through composite formation with silica reinforcement.The Journal of Physical Chemistry C, 2010, 114(21): 9618-9626. |
[31] | MEECHOONUCK M, VAS-UMNUAY P, PAVARAJAM V.Synthesis of porous silicon nitride using silica/carbon composite derived from phenol-resorcinol-formaldehyde gel.Ceramics International, 2016, 42(9): 10879-10885. |
[32] | ZHENG Y, ZHENG Y, LI Z, et al.Preparations of C/SiC composites and their use as supports for Ru catalyst in ammonia synthesis.Journal of Molecular Catalysis A: Chemical, 2009, 301(1/2): 79-83. |
[33] | RAMAN V, BAHL O P, DHAWAN U.Synthesis of silicon carbide through the sol-gel process from different precursors.Journal of Materials Science, 1995, 30(10): 2686-2693. |
[34] | LI X K, LIU L, ZHANG Y X, et al.Synthesis of nanometre silicon carbide whiskers from binary carbonaceous silica aerogels.Carbon, 2001, 39(2): 159-165. |
[35] | PREISS H, BERGER L M, BRAUN M.Formation of black glasses and silicon carbide from binary carbonaceous/silica hydrogels.Carbon, 1995, 33(33): 1739-1746. |
[36] | SERAJI M M, GHAFOORIAN N S, BAHRAMIAN A R, et al.Preparation and characterization of C/SiO2/SiC aerogels based on novolac/silica hybrid hyperporous materials.Journal of Non- Crystalline Solids, 2015, 425(1): 146-152. |
[37] | KARNIB M, KABBANI A, HOALIL H, et al.Heavy metals removal using activated carbon, silica and silica activated carbon composite.Energy Procedia, 2014, 50(1): 113-120. |
[38] | LU X, WANG P, ARDUINI-SCHUSTER M C, et al. Thermal transport in organic and opacified silica monolithic aerogels.Journal of Non-crystalline Solids, 1992, 145(1): 207-210. |
[39] | LIU H, LI T, SHI Y, et al.Thermal insulation composite prepared from carbon foam and silica aerogel under ambient pressure.Journal of Materials Engineering and Performance, 2015, 24(10): 4054-4059. |
[40] | PINCHUK O A, DUNDAR F, ATA A, et al.Improved thermal stability, properties, and electrocatalytic activity of Sol-Gel silica modified carbon supported Pt catalysts.International Journal of Hydrogen Energy, 2012, 37(3): 2111-2120. |
[41] | MONER-GIRONA M, MARTINEZ E, ESTEVE J, et al.Micromechanical properties of carbon-silica aerogel composites.Applied Physics A, 2002, 74(1): 119-122. |
[42] | LIU C, KOMARNENI S.Carbon-silica xerogel and aerogel composites.Journal of Porous Materials, 1995, 1(1): 75-84. |
[43] | SPASSOVA I, STOEVA N, NICKOLOV R, et al.Impact of carbon on the surface and activity of silica-carbon supported copper catalysts for reduction of nitrogen oxides.Applied Surface Science, 2016, 369(1): 120-129. |
[44] | WORSLEY M A, KUNTZ J D, SATCHER J H, et al.Synthesis and characterization of monolithic, high surface area SiO2/C and SiC/C composites.Journal of Materials Chemistry, 2010, 20(23): 4840-4844. |
[45] | LEVENTIS N, SADEKAR A, CHANDRASEKARANn N, et al.Click synthesis of monolithic silicon carbide aerogels from polyacrylonitrile-coated 3D silica networks.Chemistry of Materials, 2010, 22(9): 2790-2803. |
[46] | PANTONO C G, SINGH A K, ZHANGH. Silicon oxycarbide glasses.Journal of Sol-Gel Science and Technology, 1999, 14(1): 7-25. |
[47] | LIU C, CHEN H Z, KOMARNENF S, et al.High surface area SiC/silicon oxycarbide glasses prepared from phenyltrimethoxysilane- tetramethoxysilane gels.Journal of Porous Materials, 1996, 2(3): 245-252. |
[48] | SINGH A K, PANTANO C G.Porous silicon oxycarbide glasses.Journal of the American Ceramic Society, 1996, 79(10): 2696-2704. |
[49] | ZHANG H, PANTANO C G.Synthesis and characterization of silicon oxycarbide glasses.Journal of the American Ceramic Society, 1990, 73(4): 958-963. |
[50] | BABONNEAU F, THORNE K, MACKENZIE J D.Dimethyldiethoxysilane/tetraethoxysilane copolymers: precursors for the silicon-carbon-oxygen system.Chemistry of Materials, 1989, 1(5): 554-558. |
[51] | FENG J, XIAO Y, JIANG Y, et al.Synthesis, structure, and properties of silicon oxycarbide aerogels derived from tetraethylortosilicate/polydimethylsiloxane.Ceramics International, 2015, 41(4): 5281-5286. |
[52] | TOURY B, BLUM R, GOLETTO V, et al.Thermal stability of periodic mesoporous SiCO glasses.Journal of Sol-Gel Science and Technology, 2005, 33(1): 99-102. |
[53] | TAMAYO A, TELLEZ L, PENA-ALONSO R, et al.Surface changes during pyrolytic conversion of hybrid materials to oxycarbide glasses.Journal of Materials Science, 2009, 44(1): 5743-5753. |
[54] | ARAVIND P R, RATKE L, KOLBE M, et al.Gels dried under supercritical and ambient conditions: a comparative study and their subsequent conversion to silica-carbon composite aerogels. Journal of Sol-Gel Science and Technology, 2013, 67(3): 592-600. |
[55] | PRADEEP V S, AYANA D G, GRACZYK-ZAJAC M, et al.High rate capability of SiOC ceramic aerogels with tailored porosity as anode materials for Li-ion batteries. Electrochimica Acta, 2015, 157(1): 41-45. |
[56] | ARAVIND P R, SORARU G D.Porous silicon oxycarbide glasses from hybrid ambigels. Microporous and Mesoporous Materials, 2011, 142(2/3): 511-517. |
[57] | TAMAYO A, RUBIO F, RUBIO J, et al.Surface and structural modification of nanostructured mesoporous silicon oxycarbide glasses obtained from preceramic hybrids aged in NH4OH.Journal of the American Ceramic Society, 2013, 96(1): 323-330. |
[58] | PARMENTIER J, SORARU G D, BABONNEAU F.Influence of the microstructure on the high temperature behaviour of gel-derived SiOC glasses.Journal of the European Ceramic Society, 2001, 21(6): 817-824. |
[59] | WEINBERGER M, PUCHEGGER S, FROSCHL T, et al.Sol- Gel Processing of a glycolated cyclic organosilane and its pyrolysis to silicon oxycarbide monoliths with multiscale porosity and large surface areas.Chemistry of Materials, 2010, 22(4): 1509-1520. |
[60] | SORARU G D, MODENA S, GUADAGNINO E, et al.Chemical durability of silicon oxycarbide glasses.Journal of the American Ceramic Society, 2002, 85(6): 1529-1536. |
[61] | BREQUEL H, PARMENTIER J, WALTER S, et al.Systematic structural characterization of the high-temperature behavior of nearly stoichiometric silicon oxycarbide glasses.Chemistry of Materials, 2004, 16(1): 2585-2598. |
[62] | LATOURNERIE J, DEMPSEY P, HOURLIER‐BAHLOUL D, et al. Silicon oxycarbide glasses: Part 1-Thermochemical stability.Journal of the American Ceramic Society, 2006, 89(5): 1485-1491. |
[63] | SORARU G D, DALLAPICCOLA E, D'ANDREA G. Mechanical characterization of Sol-Gel-derived silicon oxycarbide glasses.Journal of the American Ceramic Society, 1996, 79(8): 2074-2080. |
[64] | RENLUND G M, PROCHAZKA S, DOREMUS R H.Silicon oxycarbide glasses: Part II. Structure and properties.Journal of Materials Research, 1991, 6(6): 2723-2734. |
[65] | MOYSAN C, RIEDEL R, HARSHE R, et al.Mechanical characterization of a polysiloxane-derived SiOC glass.Journal of the European Ceramic Society, 2007, 27(1): 397-403. |
[66] | QIU L, LI Y M, ZHENG X H, et al.Thermal-conductivity studies of macro-porous polymer-derived SiOC ceramics.International Journal of Thermophysics, 2014, 35(1): 76-89. |
[1] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
[2] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[3] | CHEN Qiang, BAI Shuxin, YE Yicong. Highly Thermal Conductive Silicon Carbide Ceramics Matrix Composites for Thermal Management: a Review [J]. Journal of Inorganic Materials, 2023, 38(6): 634-646. |
[4] | LIN Junliang, WANG Zhanjie. Research Progress on Ferroelectric Superlattices [J]. Journal of Inorganic Materials, 2023, 38(6): 606-618. |
[5] | NIU Jiaxue, SUN Si, LIU Pengfei, ZHANG Xiaodong, MU Xiaoyu. Copper-based Nanozymes: Properties and Applications in Biomedicine [J]. Journal of Inorganic Materials, 2023, 38(5): 489-502. |
[6] | YUAN Jingkun, XIONG Shufeng, CHEN Zhangwei. Research Trends and Challenges of Additive Manufacturing of Polymer-derived Ceramics [J]. Journal of Inorganic Materials, 2023, 38(5): 477-488. |
[7] | DU Jianyu, GE Chen. Recent Progress in Optoelectronic Artificial Synapse Devices [J]. Journal of Inorganic Materials, 2023, 38(4): 378-386. |
[8] | YANG Yang, CUI Hangyuan, ZHU Ying, WAN Changjin, WAN Qing. Research Progress of Flexible Neuromorphic Transistors [J]. Journal of Inorganic Materials, 2023, 38(4): 367-377. |
[9] | YOU Junqi, LI Ce, YANG Dongliang, SUN Linfeng. Double Dielectric Layer Metal-oxide Memristor: Design and Applications [J]. Journal of Inorganic Materials, 2023, 38(4): 387-398. |
[10] | ZHANG Chaoyi, TANG Huili, LI Xianke, WANG Qingguo, LUO Ping, WU Feng, ZHANG Chenbo, XUE Yanyan, XU Jun, HAN Jianfeng, LU Zhanwen. Research Progress of ScAlMgO4 Crystal: a Novel GaN and ZnO Substrate [J]. Journal of Inorganic Materials, 2023, 38(3): 228-242. |
[11] | CHEN Kunfeng, HU Qianyu, LIU Feng, XUE Dongfeng. Multi-scale Crystallization Materials: Advances in in-situ Characterization Techniques and Computational Simulations [J]. Journal of Inorganic Materials, 2023, 38(3): 256-269. |
[12] | QI Zhanguo, LIU Lei, WANG Shouzhi, WANG Guogong, YU Jiaoxian, WANG Zhongxin, DUAN Xiulan, XU Xiangang, ZHANG Lei. Progress in GaN Single Crystals: HVPE Growth and Doping [J]. Journal of Inorganic Materials, 2023, 38(3): 243-255. |
[13] | LIN Siqi, LI Airan, FU Chenguang, LI Rongbing, JIN Min. Crystal Growth and Thermoelectric Properties of Zintl Phase Mg3X2 (X=Sb, Bi) Based Materials: a Review [J]. Journal of Inorganic Materials, 2023, 38(3): 270-279. |
[14] | LIU Yan, ZHANG Keying, LI Tianyu, ZHOU Bo, LIU Xuejian, HUANG Zhengren. Electric-field Assisted Joining Technology for the Ceramics Materials: Current Status and Development Trend [J]. Journal of Inorganic Materials, 2023, 38(2): 113-124. |
[15] | XIE Bing, CAI Jinxia, WANG Tongtong, LIU Zhiyong, JIANG Shenglin, ZHANG Haibo. Research Progress of Polymer-based Multilayer Composite Dielectrics with High Energy Storage Density [J]. Journal of Inorganic Materials, 2023, 38(2): 137-147. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||