Journal of Inorganic Materials ›› 2017, Vol. 32 ›› Issue (2): 197-202.DOI: 10.15541/jim20160310
• Orginal Article • Previous Articles Next Articles
HAN Shuang-Shuang, LIU Li-Yue, SHAN Yong-Kui, YANG Fan, LI De-Zeng
Received:
2016-05-11
Revised:
2016-08-22
Published:
2017-02-20
Online:
2017-01-13
About author:
HAN Shuang-Shuang. E-mail: hss0823@126.com
CLC Number:
HAN Shuang-Shuang, LIU Li-Yue, SHAN Yong-Kui, YANG Fan, LI De-Zeng. Research of Graphene/Antireflection Nanostructure Composite Transparent Conducting Films[J]. Journal of Inorganic Materials, 2017, 32(2): 197-202.
Fig. 1 SEM images of monodisperse SiO2 NSs structure before (a) and after (b) growth of graphene and the magnification image of GE/SiO2 NSs (c) with EDS characterization of the Cu NPs left on the substrate in (c)
Fig. 2 TEM images of GE/SiO2 NSs /quartz (a) and hollow graphene NSs (b) by removing SiO2 NSs, high magnification TEM image of hollow graphene NSs (c)
Growth time | 2D band | ID/IG | I2D/IG | La/nm | |
---|---|---|---|---|---|
Position | FWHM | ||||
cm-1 | cm-1 | ||||
10 min | 2697.60 | 40 | 0.77 | 2.31 | 24.9 |
15 min | 2691.69 | 45 | 0.76 | 0.95 | 25.3 |
20 min | 2695.55 | 56 | 0.64 | 0.84 | 30.0 |
25 min | 2690.72 | 55 | 0.60 | 0.49 | 32.0 |
Table 1 Raman spectra analysis of graphene grown for different time
Growth time | 2D band | ID/IG | I2D/IG | La/nm | |
---|---|---|---|---|---|
Position | FWHM | ||||
cm-1 | cm-1 | ||||
10 min | 2697.60 | 40 | 0.77 | 2.31 | 24.9 |
15 min | 2691.69 | 45 | 0.76 | 0.95 | 25.3 |
20 min | 2695.55 | 56 | 0.64 | 0.84 | 30.0 |
25 min | 2690.72 | 55 | 0.60 | 0.49 | 32.0 |
Fig. 5 Optical transmittance spectra of the GE/SiO2 NSs AR /quartz (a), transmittance (at 550 nm) (b) and sheet resistance as a function of growth time(c)
Growth time | 10 min | 15 min | 20 min | 25 min | |
---|---|---|---|---|---|
Transmittance/% | GE/quartz | 90.30 | 88.90 | 86.40 | 78.60 |
GE/SiO2 NS AR film/quartz | 96.30 | 95.00 | 91.80 | 83.00 | |
Increment/% | 6.640 | 6.86 | 6.25 | 5.60 | |
Sheet resistance/(kΩ·□-1) | GE/quartz | -- | 16.30 | 6.07 | 1.25 |
GE/SiO2 NS AR film/quartz | 20.50 | 12.30 | 5.60 | 0.90 | |
Decrease/% | 24.54 | 7.74 | 28.00 |
Table 2 Transmittance and sheet resistance of samples
Growth time | 10 min | 15 min | 20 min | 25 min | |
---|---|---|---|---|---|
Transmittance/% | GE/quartz | 90.30 | 88.90 | 86.40 | 78.60 |
GE/SiO2 NS AR film/quartz | 96.30 | 95.00 | 91.80 | 83.00 | |
Increment/% | 6.640 | 6.86 | 6.25 | 5.60 | |
Sheet resistance/(kΩ·□-1) | GE/quartz | -- | 16.30 | 6.07 | 1.25 |
GE/SiO2 NS AR film/quartz | 20.50 | 12.30 | 5.60 | 0.90 | |
Decrease/% | 24.54 | 7.74 | 28.00 |
图S1 不同水硅比(n(H2O) : n(TEOS) )制备的SiO2纳米球阵列减反结构的透光度图谱(a), 不同水硅比制备的减反结构的SEM照片(b~d) Fig. S1 (a) Transmission spectra of the SiO2 NSs AR/quartz with different mole ratios (n(H2O) : n(TEOS)), SEM images of the SiO2 NSs AR/quartz prepared from different mole ratios( n(H2O) : n(TEOS)) (b-d)
图S3 镀膜提拉速度对SiO2纳米球阵列减反结构减反性能的影响表征 Fig. S3 Relationship between on SiO2 NSs AR nanostructure reflection from the withdrawal rate(a) Transmission spectra of the SiO2 NSs AR /quartz with different withdrawal rate, (b) Transmittance of SiO2 NSs AR /quartz as a function of withdrawal rate, and (c-e) SEM images of the SiO2 NSs AR /quartz prepared with different withdrawal rates
[1] | WEISS N O, ZHOU H, LIAO L,et al. Graphene: an emerging electronic material.Adv. Mater., 2012, 24(43): 5782-5825. |
[2] | GOMEZ D A L, ZHANG Y, SCHLENKER C W,et al. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics.ACS Nano, 2010, 4(5): 2865. |
[3] | GEIM A K, NOVOSELOV K S.The rise of graphene.Nature Materials, 2007, 6(3): 183-191. |
[4] | NAIR R R, BLAKE P, GRIGORENKO A N,et al. Fine structure constant defines visual transparency of graphene.Science, 2008, 320(5881): 1308. |
[5] | BOLOTIN K I, SIKES K J, JIANG Z,et al. Ultrahigh electron mobility in suspended graphene.Solid State Commun., 2008, 146(9): 351-353. |
[6] | KIM K S, ZHAO Y, JANG H,et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes.Nature, 2009, 457(7230): 706-710. |
[7] | RAO C N R, SOOD A K, SUBRAHMANYAM K S. The new two-dimensional nanomaterial.Angew. Chemie, 2009, 48(42): 7752-7777. |
[8] | CAO H, YU Q, COLBY R, et al. Large-scale graphitic thin films synthesized on Ni and transferred to insulators: structural and electronic properties.J. Appl. Phys., 2010, 107(4): 044310. |
[9] | BHAVIRIPUDI S, JIA X, DRESSELHAUS M.S,et al.Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett., 2010, 10(10): 4128-4133. |
[10] | GADDAM S, BJELKEVIG C, GE S, et al. Direct graphene growth on MgO: origin of the band gap.J. Phys. Condens. Matter., 2011, 23(7): 072204. |
[11] | JERNG S, YU D, KIM Y,et al. Nanocrystalline graphite growth on sapphire by carbon molecular beam epitaxy.J. Phys. Chem. C, 2011, 115(11): 4491-4494. |
[12] | BI H, SUN S, HUANG F, et al. Direct growth of few-layer graphene films on SiO2 substrates and their photovoltaic applications.J. Mater. Chem., 2012, 22(2): 411-416. |
[13] | CHEN J, GUO Y, WEN Y,et al. Two-stage metal-catalyst-free growth of high-quality polycrystalline graphene films on silicon nitride substrates.Adv. Mater., 2013, 25(7): 992-997. |
[14] | SU C Y, LU A Y, WU C Y,et al. Direct formation of wafer scale graphene thin layers on insulating substrates by chemical vapor deposition.Nano Letters, 2011, 11(9): 3612-3616. |
[15] | GREEN M A.Third Generation Photovoltaics: Advanced Solar Energy Conversion. Berlin: Springer Press, 2005: 35-38. |
[16] | LI D Z, WAN D Y, X. ZHU L,et al.Broadband antireflection TiO2-SiO2 stack coatings with refractive-index-grade structure and their applications to Cu(In, Ga)Se2 solar cells.Solar Energy Materials & Solar Cells, 2014, 130(7): 505-512. |
[17] | LI D Z, WU G M, GAO G H, et al. Ultrafast coloring-bleaching performance of nanoporous WO3-SiO2 gasochromic films doped with Pd catalyst.ACS Applied Materials & Interfaces, 2011, 3(3): 4573-4579. |
[18] | LIU B T, YEH W D.Antireflective surface fabricated from colloidal silica nanoparticles.Colloids and Surfaces A: Physicochem.Eng. Aspects, 2010, 356(1/2/3): 145-149. |
[19] | WU JUAN-XIA, XU HUA, ZHANG JIN.Raman spectroscopy of graphene.Acta Chim.Sinica, 2014, 72(3): 301-318. |
[1] | LI Yicun, LIU Xuedong, HAO Xiaobin, DAI Bing, LYU Jilei, ZHU Jiaqi. Rapid Growth of Single Crystal Diamond at High Energy Density by Plasma Focusing [J]. Journal of Inorganic Materials, 2023, 38(3): 303-309. |
[2] | CHEN Saisai, PANG Yali, WANG Jiaona, GONG Yan, WANG Rui, LUAN Xiaowan, LI Xin. Preparation and Properties of Green-yellow Reversible Electro-thermochromic Fabric [J]. Journal of Inorganic Materials, 2022, 37(9): 954-960. |
[3] | SUN Ming, SHAO Puzhen, SUN Kai, HUANG Jianhua, ZHANG Qiang, XIU Ziyang, XIAO Haiying, WU Gaohui. First-principles Study on Interface of Reduced Graphene Oxide Reinforced Aluminum Matrix Composites [J]. Journal of Inorganic Materials, 2022, 37(6): 651-659. |
[4] | AN Lin, WU Hao, HAN Xin, LI Yaogang, WANG Hongzhi, ZHANG Qinghong. Non-precious Metals Co5.47N/Nitrogen-doped rGO Co-catalyst Enhanced Photocatalytic Hydrogen Evolution Performance of TiO2 [J]. Journal of Inorganic Materials, 2022, 37(5): 534-540. |
[5] | WANG Hongli, WANG Nan, WANG Liying, SONG Erhong, ZHAO Zhankui. Hydrogen Generation from Formic Acid Boosted by Functionalized Graphene Supported AuPd Nanocatalysts [J]. Journal of Inorganic Materials, 2022, 37(5): 547-553. |
[6] | DONG Shurui, ZHAO Di, ZHAO Jing, JIN Wanqin. Effect of Ionized Amino Acid on the Water-selective Permeation through Graphene Oxide Membrane in Pervaporation Process [J]. Journal of Inorganic Materials, 2022, 37(4): 387-394. |
[7] | JIANG Lili, XU Shuaishuai, XIA Baokai, CHEN Sheng, ZHU Junwu. Defect Engineering of Graphene Hybrid Catalysts for Oxygen Reduction Reactions [J]. Journal of Inorganic Materials, 2022, 37(2): 215-222. |
[8] | WU Jing, YU Libing, LIU Shuaishuai, HUANG Qiuyan, JIANG Shanshan, ANTON Matveev, WANG Lianli, SONG Erhong, XIAO Beibei. NiN4/Cr Embedded Graphene for Electrochemical Nitrogen Fixation [J]. Journal of Inorganic Materials, 2022, 37(10): 1141-1148. |
[9] | LI Tie, LI Yue, WANG Yingyi, ZHANG Ting. Preparation and Catalytic Properties of Graphene-Bismuth Ferrite Nanocrystal Nanocomposite [J]. Journal of Inorganic Materials, 2021, 36(7): 725-732. |
[10] | XIANG Hui, QUAN Hui, HU Yiyuan, ZHAO Weiqian, XU Bo, YIN Jiang. Piezoelectricity of Graphene-like Monolayer ZnO and GaN [J]. Journal of Inorganic Materials, 2021, 36(5): 492-496. |
[11] | LI Hao, TANG Zhihong, ZHUO Shangjun, QIAN Rong. High Performance of Room-temperature NO2 Gas Sensor Based on ZIF8/rGO [J]. Journal of Inorganic Materials, 2021, 36(12): 1277-1282. |
[12] | HE Junlong, SONG Erhong, WANG Lianjun, JIANG Wan. DFT Calculation of NO Adsorption on Cr Doped Graphene [J]. Journal of Inorganic Materials, 2021, 36(10): 1047-1052. |
[13] | LUO Yi,FENG Junzong,FENG Jian,JIANG Yonggang,LI Liangjun. Research Progress on Advanced Carbon Materials as Pt Support for Proton Exchange Membrane Fuel Cells [J]. Journal of Inorganic Materials, 2020, 35(4): 407-415. |
[14] | ZHANG Wei,GAO Peng,HOU Chengyi,LI Yaogang,ZHANG Qinghong,WANG Hongzhi. Chip Sensor for pH and Temperature Monitoring Based on ZnO Composite [J]. Journal of Inorganic Materials, 2020, 35(4): 416-422. |
[15] | ZHAO Chaofeng, JIN Jiaren, HUO Yingzhong, SUN Lu, AI Yuejie. Adsorption of Phenolic Organic Pollutants on Graphene Oxide: Molecular Dynamics Study [J]. Journal of Inorganic Materials, 2020, 35(3): 277-283. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||