Journal of Inorganic Materials ›› 2017, Vol. 32 ›› Issue (2): 135-140.DOI: 10.15541/jim20160276
• Orginal Article • Previous Articles Next Articles
WANG Ling-Ling1, HUANG Hao1, Ramon Alberto Paredes Camacho1, WU Ai-Min1, CAO Guo-Zhong1, 2
Received:
2016-04-25
Revised:
2016-08-23
Published:
2017-02-20
Online:
2017-01-13
About author:
WANG Ling-Ling. E-mail: Wang_LL4585@163.com
Supported by:
CLC Number:
WANG Ling-Ling, HUANG Hao, Ramon Alberto Paredes Camacho, WU Ai-Min, CAO Guo-Zhong. Preparation and Electrochemical Properties of Core-shell (Mn7C3, Ni)@C Nanoparticles[J]. Journal of Inorganic Materials, 2017, 32(2): 135-140.
D peak /cm-1 | G peak/cm-1 | ID / IG | |
---|---|---|---|
Sample 1 | 1348 | 1577 | 0.22 |
Sample 2 | 1342 | 1576 | 0.27 |
Sample 3 | 1341 | 1565 | 0.60 |
Table1 Data from Raman spectra of the core-shell (Mn7C3, Ni)@C nanoparticles
D peak /cm-1 | G peak/cm-1 | ID / IG | |
---|---|---|---|
Sample 1 | 1348 | 1577 | 0.22 |
Sample 2 | 1342 | 1576 | 0.27 |
Sample 3 | 1341 | 1565 | 0.60 |
v(mV·s-1) | 2 | 5 | 10 |
---|---|---|---|
Sample 1 | 485.12 | 448.64 | 414.54 |
Sample 2 | 328.31 | 299.81 | 282.99 |
Sample 3 | 303.57 | 297.19 | 281.25 |
Table 2 Specific capacitance of the core-shell (Mn7C3, Ni)@C nanoparticles / (F·g-1)
v(mV·s-1) | 2 | 5 | 10 |
---|---|---|---|
Sample 1 | 485.12 | 448.64 | 414.54 |
Sample 2 | 328.31 | 299.81 | 282.99 |
Sample 3 | 303.57 | 297.19 | 281.25 |
Fig. 4 CV curves of samples 1-3 at scanning rates of 2, 5, 10 mV/s(a-c), and DC curves of samples 1-3 at charge and discharge current densities of 2, 3, 5 A/g(d-f)Note: Somple 1-3 is Mn:Ni=3:2, 1:1, 2:3, rerpectively
Fig. 5 Cycle stability curves (a) and histograms of energy and power densities (b) of samples 1-3Note: Somple 1-3 is Mn:Ni=3:2, 1:1, 2:3, rerpectively
[1] | MARTIN WINTER, RALPH J BRODD.What are batteries, fuel cells, and supercapacitors?Chem. Rev., 2004, 104(10): 4245-4270. |
[2] | RASINES G, LAVELA P, MACIAS C,et al. Electrochemical response of carbon aerogel electrodes in saline water.J. Electroanal. Chem., 2012, 671(5): 92-98. |
[3] | ELZBIETA FRACKOWIAK, FRANCOIS BEGUIN.Carbon materials for the electrochemical storage of energy in capacitors.Carbon, 2001, 39(6): 937-950. |
[4] | ELZBIETA FRACKOWIAK, FRANCOIS BEGUIN.Electrochemical storage of energy in carbon nanotubes and nanostructured carbons.Carbon, 2002, 40(10): 1775-1787. |
[5] | WANG Y, SHI Z Q, HUANG Y,et al. Supercapacitor devices based on graphene materials.J. Phys. Chem. C, 2009, 113(30): 13103-13107. |
[6] | ZHU Y, MURALI S, STOLLER M D,et al. Carbon-based supercapacitors produced by activation of graphene.Science, 2011, 332(6037): 1537-1541. |
[7] | LI M, MA K Y, CHENG J P,et al. Nickel-cobalt hydroxide nanoflakes conformal coating on carbon nanotubes as a supercapacitive material with high-rate capability.J. Power Sources, 2015, 286: 438-444. |
[8] | TOUPIN M, BROUSSE T, BELANGER D.Charge storage mechanism of MnO2 electrode used in aquesous electrochemical capacitor.Chem. Mater., 2004, 16(16): 3184-3190. |
[9] | HE Y M, CHEN W J, LI X D, et al. Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano, 2013, 7(1): 174-182. |
[10] | ZHANG J, ZANG J, WANG Y,et al. One-pot synthesis of a Mn(MnO)/Mn5C2/carbon nanotube nanocomposite for supercapacitors.RSC Adv., 2014, 4(109): 64162-64168. |
[11] | LIU X G, OR S W, JIN C G,et al. NiO/C nanocapsules with onion-like carbon shell as anode material for lithium ion batteries.Carbon, 2013, 60: 215-220. |
[12] | LIU X G, BI N N, FENG C,et al. Onion-like carbon coated CuO nanocapsules: a highly reversible anode material for lithium ion batteries.J. Alloys Compd., 2014, 587: 1-5. |
[13] | HUANG W W, FRECH ROGER.in situ Raman studies of graphite surface structures during lithium electrochemical intercalation.J. Electrochem. Soc., 1998, 145(3): 765-770. |
[14] | LIU T T, LIU E H, DING R,et al. Highly graphitic clew-like nanocarbons for supercapacitors.ChemElectroChem, 2015, 2(6): 852-858. |
[15] | WANG Z H, QIE L, YUAN L X,et al. Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance.Carbon, 2013, 55: 328-334. |
[16] | WAN H Z, LV L, PENG L,et al. Hollow spiny shell of porous Ni-Mn oxides: A facile synthesis route and their application as electrode in supercapacitors.J. Power Sources, 2015, 286: 66-72. |
[17] | LEE S W, KIM J, CHEN SHUO,et al..Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors.ACS Nano, 2010, 4(7): 3889-3896. |
[18] | LEI Z B, SHI F H, LU L.Incorporation of MnO2-coated carbon nanotubes between graphene sheets as supercapacitor electrode. ACS Appl. Mat.Interfaces, 2012, 4(2): 1058-1064. |
[19] | YAN J, WEI T, SHAO B,et al. Electrochemical properties of graphene nanosheet/carbon black composites as electrodes for supercapacitors.Carbon, 2010, 48(6): 1731-1737. |
[20] | KIM S I, LEE J S, AHN H J, et al. Facile route to an efficient NiO supercapacitor with a three-dimensional nanonetwork morphology.ACS Appl. Mat. Interfaces, 2013, 5(5): 1596-1603. |
[21] | LU Q, LATTANZI MICHAEL W, CHEN Y P,et al. Supercapacitor electrodes with high-energy and power densities prepared from monolithic NiO/Ni nanocomposites.Angew. Chem. Int. Ed., 2011, 50(30): 6847-6850. |
[1] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
[2] | SUN Peng, ZHANG Shaoning, BI Hui, DONG Wujie, HUANG Fuqiang. Tuning Nitrogen Species and Content in Carbon Materials through Constructing Variable Structures for Supercapacitors [J]. Journal of Inorganic Materials, 2021, 36(7): 766-772. |
[3] | LIU Fangfang, CHUAN Xiuyun, YANG Yang, LI Aijun. Influence of N/S Co-doping on Electrochemical Property of Brucite Template Carbon Nanotubes [J]. Journal of Inorganic Materials, 2021, 36(7): 711-717. |
[4] | WANG Yiliang, AI Yunlong, YANG Shuwei, LIANG Bingliang, ZHENG Zhenhuan, OUYANG Sheng, HE Wen, CHEN Weihua, LIU Changhong, ZHANG Jianjun, LIU Zhiyong. Facile Synthesis and Supercapacitor Performance of M3O4(M=FeCoCrMnMg) High Entropy Oxide Powders [J]. Journal of Inorganic Materials, 2021, 36(4): 425-430. |
[5] | WANG Yue, CUI Changsong, WANG Shiwei, ZHAN Zhongliang. Symmetrical La3+-doped Sr2Fe1.5Ni0.1Mo0.4O6-δ Electrode Solid Oxide Fuel Cells for Pure CO2 Electrolysis [J]. Journal of Inorganic Materials, 2021, 36(12): 1323-1329. |
[6] | LI Zehui,TAN Meijuan,ZHENG Yuanhao,LUO Yuyang,JING Qiushi,JIANG Jingkun,LI Mingjie. Application of Conductive Metal Organic Frameworks in Supercapacitors [J]. Journal of Inorganic Materials, 2020, 35(7): 769-780. |
[7] | CHEN Jun,MA Pei-Hua,ZHANG Cheng,Laurent RUHLMANN,LYU Yao-Kang. Preparation and Electrochemical Property of New Multifunctional Inorganic/Organic Composite Film [J]. Journal of Inorganic Materials, 2020, 35(2): 217-223. |
[8] | FEI Mingjie, ZHANG Renping, ZHU Guisheng, YU Zhaozhe, YAN Dongliang. Preparation and Pseudocapacitive Properties of Phosphate Ion-doped MnFe2O4 [J]. Journal of Inorganic Materials, 2020, 35(10): 1137-1141. |
[9] | DING Zhuofeng, YANG Yongqiang, LI Zaijun. Synthesis and Supercapacitor Performance of Histidine-functionalized Carbon Dots/Graphene Aerogel [J]. Journal of Inorganic Materials, 2020, 35(10): 1130-1136. |
[10] | LI Teng-Fei, HUANG Lu-Jun, YAN Xu-Dong, LIU Qing-Lei, GU Jia-Jun. Ti3C2Tx/Wood Carbon as High-areal-capacity Electrodes for Supercapacitors [J]. Journal of Inorganic Materials, 2020, 35(1): 126-130. |
[11] | ZHANG Tian-Yu, CUI Cong, CHENG Ren-Fei, HU Min-Min, WANG Xiao-Hui. Fabrication of Planar Porous MXene/Carbon Composite Electrodes by Simultaneous Ammonization/Carbonization [J]. Journal of Inorganic Materials, 2020, 35(1): 112-118. |
[12] | MA Ya-Nan, LIU Yu-Fei, YU Chen-Xu, ZHANG Chuan-Kun, LUO Shi-Jun, GAO Yi-Hua. Monolayer Ti3C2Tx Nanosheets with Different Lateral Dimension: Preparation and Electrochemical Property [J]. Journal of Inorganic Materials, 2020, 35(1): 93-98. |
[13] | Wei-Jia XU, Da-Ping QIU, Shi-Qiang LIU, Min LI, Ru YANG. Preparation of Cork-derived Porous Activated Carbon for High Performance Supercapacitors [J]. Journal of Inorganic Materials, 2019, 34(6): 625-632. |
[14] | Wei LIU, Kai ZHENG, Dong-Hong WANG, Yi-San LEI, Huai-Lin FAN. Co3O4 Nanowire Arrays@Activated Carbon Fiber Composite Materials: Facile Hydrothermal Synthesis and Its Electrochemical Application [J]. Journal of Inorganic Materials, 2019, 34(5): 487-492. |
[15] | Yuan WANG, Jie LIN, Zheng CHANG, Tian-Quan LIN, Meng QIAN, Fu-Qiang HUANG. Electrodeposited Nanoflakes of RuOx·nH2O on Three-dimensional Graphene for Flexible Supercapacitors [J]. Journal of Inorganic Materials, 2019, 34(4): 455-460. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||