Journal of Inorganic Materials ›› 2017, Vol. 32 ›› Issue (1): 101-106.DOI: 10.15541/jim20160210
• Orginal Article • Previous Articles Next Articles
HUANG Rong-Tie1, 2, ZHENG Ming2, SUI Li-Fang1, 2, CAI Chuan-Bing1, HUANG Fu-Qiang2, 3
Received:
2016-03-31
Published:
2017-01-20
Online:
2016-12-15
About author:
HUANG Rong-Tie (1988– ), male, candidate of master degree. E-mail: huangrongtie@student.sic.ac.cn
Supported by:
CLC Number:
HUANG Rong-Tie, ZHENG Ming, SUI Li-Fang, CAI Chuan-Bing, HUANG Fu-Qiang. Synthesis and Physical Properties of Solar Material Cu1-xLixInSe2[J]. Journal of Inorganic Materials, 2017, 32(1): 101-106.
Fig. 1 (a) XRD patterns of Cu1-xLixInSe2 (x = 0-0.4) sample (The inset showing details of the XRD patterns around 70° and 72°) and (b) variation of the lattice parameters a and c
Fig. 4 Typical Nyquist plots of the electrochemical impedance spectra of Cu1-xLixInSe2 (x = 0-0.4) samplesThe inset shows the electrical resistivity with different doping contents at room temperature
Fig. 5 Diffuse reflectance spectra of Cu1-xLixInSe2 (x=0-0.4) samples (a) and the plots of (αhν)2 vs photon energy for Cu1-xLixInSe2 (x=0-0.4) samples (b)The inset shows the band gaps with different doping contents
[1] | ONUMA Y, TAKEUCHI K, ICHIKAWA S, et al. Preparation and characterization of CuInS2 thin films solar cells with large grain.Sol. Energ. Mat. Sol. C, 2001, 69(3): 261-269. |
[2] | JACKSON P, HARISKOS D, LOTTER E,et al.New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%. Prog. Photovoltaics, 2011, 19(7): 894-897. |
[3] | CHIANG C S, LEE W H, CHANG T W,et al.Improving conversion efficiency of co-electrodeposited CuInSe2 thin film solar cells with substrate and solution heating.J. Appl. Electrochem., 2015, 45(6): 549-556. |
[4] | SCHLENKER E, MERTENS V, PARISI J,et al. Schottky contact analysis of photovoltaic chalcopyrite thin film absorbers.Phys. Lett. A, 2007, 362(2/3): 229-233. |
[5] | JAKHMOLA P, AGARWAL G, JHA P K,et al.Growth and characterization of chalcopyrite CuInSe2 nanoparticles.Indian J. Phys., 2015, 89(3): 225-231. |
[6] | SCHOEN D T, PENG H L, CUI Y.CuInSe2 nanowires from facile chemical transformation of In2Se3 and their integration in single-nanowire devices.ACS Nano, 2013, 7(4): 3205-3211. |
[7] | BEREZNEV S, KOIS J, GOLOVTSOV I,et al.Electrodeposited (Cu-In-Se)/polypyrrole PV structures.Thin Solid Films, 2006, 511: 425-429. |
[8] | HANIAS M, ANAGNOSTOPOULOS A, KAMBAS K,et al.On the non-linear properties of Tlins2, Tlinse2, Tlinte2 ternary compounds.Physica B, 1989, 160(2): 154-160. |
[9] | WEI S H, ZHANG S B, ZUNGER A.Effects of Ga addition to CuInSe2 on its electronic, structural, and defect properties.Appl. Phys. Lett., 1998, 72(24): 3199-3201. |
[10] | HAN Q F, LIU Q, DUAN C H,et al.Effects of annealing on structural and electrical properties of CuInSe2 thin films prepared by hybrid sputtering/evaporation processes.J. Electron. Mater., 2011, 40(6): 1452-1456. |
[11] | WEI S H, ZHANG S B, ZUNGER A.Effects of Na on the electrical and structural properties of CuInSe2.J. Appl. Phys., 1999, 85(10): 7214-7218. |
[12] | WEISE S, NOWAK E, LENZ A,et al.Investigations of the system LiInSe2-CuInSe2.J. Cryst. Growth, 1996, 166(1-4): 718-721. |
[13] | SUNSHINE S A, KANG D, IBERS J A.A new low-temperature route to metal polychalcogenides - solid-state synthesis of K4Ti3S14, a novel one-dimensional compound.J. Am. Chem. Soc., 1987, 109(20): 6202-6204. |
[14] | DJELLAL L, OMEIRI S, BOUGUELIA A,et al.Photoelectrochemical hydrogen-evolution over p-type chalcopyrite CuInSe2.J. Alloys. Compd., 2009, 476(1/2): 584-589. |
[15] | KLIMOVA A M, ARIF M, TOLOCHKO O V,et al.Preparation and properties of copper indium diselenide CuInSe2.Glass Phys. Chem., 2006, 32(3): 325-329. |
[16] | KORZUN B V, FADZEYEVA A A, MAROZ I.Phase relations in the CuInSe2-CuBiSe2 semiconductor system.Phys. Status Solidi C, 2009, 6(5): 1047-1050. |
[17] | YANG C Y, WANG Y M, LI S T,et al.CuSbSe2-assisted sintering of CuInSe2 at low temperature.J. Mater. Sci., 2012, 47(20): 7085-7089. |
[18] | LIU M L, CHEN I W, HUANG F Q,et al.Improved thermoelectric properties of Cu-doped quaternary chalcogenides of Cu2CdSnSe4.Adv. Mater., 2009, 21(37): 3808-3812. |
[19] | PARKES J, TOMLINSO.RD, HAMPSHIR M J.Crystal data for CuInSe2.J. Appl. Crystallogr., 1973, 6(Oct1): 414-416. |
[20] | LI Y L, FAN W L, SUN H G,et al.Computational insight into the effect of monovalent cations on the electronic, optical, and lattice dynamic properties of XInSe2(X = Cu, Ag, Li).J. Appl. Phys., 2011, 109(11): 113535. |
[21] | MATSUSHITA H, ENDO S, IRIE T.Effects of oxygen doping on bulk properties of CuInSe2 crystals.Jpn. J. Appl. Phys., 1992, 31(9A): 2687-2688. |
[22] | ROY S, GUHA P, KUNDU S N, et al.Characterization of Cu(In,Ga)Se2 films by Raman scattering.Mater. Chem. Phys., 2002, 73(1): 24-30. |
[23] | RINCON C, RAMIREZ F J.Lattice-vibrations of CuInSe2 and CuGaSe2 by Raman microspectrometry.J. Appl. Phys., 1992, 72(9): 4321-4324. |
[24] | DAS K, PANDA S K, CHAUDHURI S.Fabrication of nanostructured CuInS2 thin films by ion layer gas reaction method. Appl. Surf. Sci., 2007, 253(11): 5166-5172. |
[25] | SPANIER J E, ROBINSON R D, ZHENG F,et al. Size-dependent properties of CeO2-y nanoparticles as studied by Raman scattering.Physical Review B, 2001, 64(24): 245407. |
[26] | KANATZIDIS M G.New directions in synthetic solid state chemistry: Chalcophosphate salt fluxes for discovery of new multinary solids.Curr. Opin. Solid St. Mater. Sci., 1997, 2(2): 139-149. |
[27] | CHIOU B S, LIN S T, DUH J G,et al.Equivalent-circuit model in grain-boundary barrier layer capacitors.Journal of the American Ceramic Society, 1989, 72(10): 1967-1975. |
[28] | SCHON J H.Extrinsic doping of CuGaSe2 single crystals.J. Phys. D. Appl. Phys., 2000, 33(3): 286-291. |
[29] | VARGAS W E, NIKLASSON G A.Applicability conditions of the Kubelka-Munk theory.Appl. Optics, 1997, 36(22): 5580-5586. |
[30] | ALONSO M I, WAKITA K, PASCUAL J,et al.Optical functions and electronic structure of CuInSe2, CuGaSe2, CuInS2, and CuGaS2.Physical Review B, 2001, 63(7): 075203. |
[31] | WEI S H, ZUNGER A.Band offsets and optical bowings of chalcopyrites and Zn-Based Ii-Vi alloys. J. Appl. Phys., 1995, 78(6): 3846-3856. |
[1] | ZHANG Wanwen, LUO Jianqiang, LIU Shujuan, MA Jianguo, ZHANG Xiaoping, YANG Songwang. Zirconia Spacer: Preparation by Low Temperature Spray-coating and Application in Triple-layer Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(2): 213-218. |
[2] | JIAO Boxin, LIU Xingchong, QUAN Ziwei, PENG Yongshan, ZHOU Ruonan, LI Haimin. Performance of Perovskite solar cells Doped with L-arginine [J]. Journal of Inorganic Materials, 2022, 37(6): 669-675. |
[3] | MING Yue, HU Yue, MEI Anyi, RONG Yaoguang, HAN Hongwei. Application of Lead Acetate Additive for Printable Perovskite Solar Cell [J]. Journal of Inorganic Materials, 2022, 37(2): 197-203. |
[4] | ZHANG Fengjuan, HAN Boning, ZENG Haibo. Perovskite Quantum Dot Photovoltaic and Luminescent Concentrator Cells: Current Status and Challenges [J]. Journal of Inorganic Materials, 2022, 37(2): 117-128. |
[5] | JI Yongji, LIU Dong, LI Qiang. Thermodynamic Efficiency Limits of Semitransparent Solar Cells [J]. Journal of Inorganic Materials, 2022, 37(2): 204-208. |
[6] | WANG Wanhai, ZHOU Jie, TANG Weihua. Passivation Strategies of Perovskite Film Defects for Solar Cells [J]. Journal of Inorganic Materials, 2022, 37(2): 129-139. |
[7] | YANG Xinyue, DONG Qingshun, ZHAO Weidong, SHI Yantao. 4-Chlorobenzylamine-based 2D/3D Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2022, 37(1): 72-78. |
[8] | LIU Wenwen, HU Zhilei, WANG Li, CAO Mengsha, ZHANG Jing, ZHANG Jing, ZHANG Shuai, YUAN Ningyi, DING Jianning. Passiviation of L-3-(4-Pyridyl)-alanine on Interfacial Defects of Perovskite Solar Cell [J]. Journal of Inorganic Materials, 2021, 36(6): 629-636. |
[9] | WANG Yanxiang, GAO Peiyang, FAN Xueyun, LI Jiake, GUO Pingchun, HUANG Liqun, SUN Jian. Effect of SnO2 Annealing Temperature on the Performance of Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2021, 36(2): 168-174. |
[10] | YU Shouwu, ZHAO Zewen, ZHAO Jinjin, XIAO Shujuan, SHI Yan, GAO Cunfa, SU Xiao, HU Yuxiang, ZHAO Zhisheng, WANG Jie, WANG Lianzhou. Research Progress in Novel In-situ Integrative Photovoltaic-storage Tandem Cells [J]. Journal of Inorganic Materials, 2020, 35(6): 623-632. |
[11] | SUN Ding, DING Yanyan, KONG Lingwei, ZHANG Yuhong, GUO Xiujuan, WEI Liming, ZHANG Li, ZHANG Lixin. First-principles Study on Mg Doping in Cu2ZnSnS4 [J]. Journal of Inorganic Materials, 2020, 35(11): 1290-1294. |
[12] | Xi-Qing LÜ, Huan-Yu ZHANG, Rui LI, Mei ZHANG, Min GUO. Nb2O5 Coating on the Performance of Flexible Dye Sensitized Solar Cell Based on TiO2 Nanoarrays/Upconversion Luminescence Composite Structure [J]. Journal of Inorganic Materials, 2019, 34(6): 590-598. |
[13] | Ce LI, Shuang CHEN, Rui-Qian-Ling GAO, Ran LI, Cheng-Yi HOU, Hong-Zhi WANG, Hua-Qing XIE, Qing-Hong ZHANG. Sb-doped Tin Oxide Thin Film: Preparation and Effect on Cooling Silicon Solar Cells [J]. Journal of Inorganic Materials, 2019, 34(5): 515-520. |
[14] | Xin XU, Shu-Rong WANG, Xun MA, Shuai YANG, Yao-Bin LI, Hong-Bin YANG. Comparative Study of Cu2ZnSnS4 Thin Films Prepared by Chalcogenide and Single Targets [J]. Journal of Inorganic Materials, 2019, 34(5): 529-534. |
[15] | YANG Ying, PAN De-Qun, ZHANG Zheng, CHEN Tian, HAN Xiao-Min, ZHANG Li-Song, GUO Xue-Yi. Photovoltaic Performance of Ag2Se Quantum Dots Co-sensitized Solid-state Dye-sensitized Solar Cells [J]. Journal of Inorganic Materials, 2019, 34(2): 137-144. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||