Journal of Inorganic Materials ›› 2017, Vol. 32 ›› Issue (1): 1-10.DOI: 10.15541/jim20160297
• Orginal Article • Next Articles
LUO Wei1,2, WEI Jing3, DENG Yong-Hui3, LI Yu-Hui3, WANG Lian-Jun1, ZHAO Tao1, JIANG Wan1
Received:
2016-05-10
Revised:
2016-06-14
Published:
2017-01-20
Online:
2016-12-15
About author:
LUO Wei. E-mail: wluo@dhu.edu.cn
Supported by:
CLC Number:
LUO Wei, WEI Jing DENG Yong-Hui, LI Yu-Hui, WANG Lian-Jun, ZHAO Tao, JIANG Wan. Progress on the Fabrication of Ordered Mesoporous Materials with Large Pores by Using Novel Amphiphilic Block Copolymers as Templates[J]. Journal of Inorganic Materials, 2017, 32(1): 1-10.
Fig. 3 Schematic illustration of the formation process of mesoporous carbon by using amphiphilic PS-b-P4VP copolymers as template (a) and its corresponding SEM image (b)[43]
Fig. 4 Schematic illustration of the formation process of mesoporous carbon with tunable pore size and wall thickness by using amphiphilic PEO-b-PMMA-b-PS copolymers as template[46]
Fig. 7 Schematic illustration of the formation process of mesoporous titania with large pores and simple cubic structure by using amphiphilic PEO-b-PS copolymers as template[52]
[1] | SHI Y, WAN Y, ZHAO D.Ordered mesoporous non-oxide materials.Chem. Soc. Rev., 2011, 40(7): 3854-3878. |
[2] | ZHAO D, FENG J,HUO Q, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores.Science, 1998, 279(5350): 548-552. |
[3] | BECK J S, VARTULI J C,ROTH W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates.J. Am. Chem. Soc., 1992, 114(27): 10834-10843. |
[4] | MENG Y, GU D, ZHANG F, et al. A Family of highly ordered mesoporous polymer resin and carbon structures from organic-organic self-sssembly.Chem. Mater., 2006, 18(18): 4447-4464. |
[5] | ZHAI Y, DOU Y, ZHAO D, et al. Carbon materials for chemical capacitive energy storage. Adv. Mater., 2011, 23(42): 4828-4850. |
[6] | LIU Y, LAN K, BAGABAS A A, et al. Ordered macro/mesoporous TiO2 hollow microspheres with highly crystalline thin shells for high-efficiency photoconversion.Small, 2016, 12(7): 860-867. |
[7] | WANG C, LI X, XI X, et al. Bimodal highly ordered mesostructure carbon with high activity for Br2/Br- redox couple in bromine based batteries.Nano Energy, 2016, 21: 217-227. |
[8] | LIU H, LI W, SHEN D, et al. Graphitic carbon conformal coating of mesoporous TiO2 hollow spheres for high-performance lithium ion battery anodes. J. Am. Chem. Soc., 2015, 137(40): 13161-13166. |
[9] | ZHOU W, GAO H,GOODENOUGH J B.Low-cost hollow mesoporous polymer spheres and all-solid-state lithium, sodium batteries.Adv. Energy Mater., 2016, 6(1):1501802. |
[10] | DENG Y, CAI Y, SUN Z, et al. Multifunctional mesoporous composite microspheres with well-designed nanostructure: a highly integrated catalyst system.J. Am. Chem. Soc., 2010, 132(24): 8466-8473. |
[11] | GARG S, SONI K, AJEETH PRABHU T, et al. Effect of ordered mesoporous Zr SBA-15 support on catalytic functionalities of hydrotreating catalysts 2.Variation of molybdenum and promoter loadings. Catal. Today, 2016, 261: 128-136. |
[12] | DUTTA B, BISWAS S, SHARMA V, et al. Mesoporous manganese oxide catalyzed aerobic oxidative coupling of anilines to aromatic azo compounds.Angew. Chem. Int. Ed., 2016, 55(6): 2171-2175. |
[13] | JOO S H, PARK J Y, TSUNG C K, et al. Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions. Nat. Mater., 2009, 8(2): 126-131. |
[14] | EGODAWATTE S, DATT A, BURNS E A, et al. Chemical insight into the adsorption of chromium(III) on iron oxide/mesoporous silica nanocomposites.Langmuir, 2015, 31(27): 7553-7562. |
[15] | FAN J, YU C, GAO F,, et al. Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties.Angew. Chem. Int. Ed., 2003, 42(27): 3146-3150. |
[16] | TENG W, WU Z, FAN J, et al. Amino-functionalized ordered mesoporous carbon for the separation of toxic microcystin-LR. J. Mater. Chem., 2015, 3(37): 19168-19176. |
[17] | WU C, LIANG Y, YANG K, et al. Clickable periodic mesoporous organosilica monolith for highly efficient capillary chromatographic separation. Anal. Chem., 2016, 88(3): 1521-1525. |
[18] | LUO W, LI Y, DONG J, et al. A resol-assisted co-assembly approach to crystalline mesoporous niobia spheres for electrochemical biosensing.Angew. Chem. Int. Ed., 2013, 52(40): 10505-10510. |
[19] | GE X, SUN L, MA B, et al. Simultaneous realization of Hg2+ sensing, magnetic resonance imaging and upconversion luminescence in vitro and in vivo bioimaging based on hollow mesoporous silica coated UCNPs and ruthenium complex. Nanoscale, 2015, 7(33): 13877-13887. |
[20] | LI Z, CLEMENS D L,LEE B Y, et al. Mesoporous silica nanoparticles with pH-sensitive nanovalves for delivery of moxifloxacin provide improved treatment of lethal pneumonic tularemia.ACS Nano, 2015, 9(11): 10778-10789. |
[21] | LIU J, LUO Z, ZHANG J, et al. Hollow mesoporous silica nanoparticles facilitated drug delivery via cascade pH stimuli in tumor microenvironment for tumor therapy.Biomaterials, 2016, 83: 51-65. |
[22] | WANG Y, GU H.Core shell-type magnetic mesoporous silica nanocomposites for bioimaging and therapeutic agent delivery.Adv. Mater., 2015, 27(3): 576-585. |
[23] | SCHÜTH F. Non-siliceous mesostructured and mesoporous materials.Chem. Mater., 2001, 13(10): 3184-3195. |
[24] | WIDENMEYER M,ANWANDER R.Pore size control of highly ordered mesoporous silica MCM-48.Chem. Mater., 2002, 14(4): 1827-1831. |
[25] | YU C, FAN J, TIAN B, et al. Synthesis of mesoporous silica from commercial poly(ethylene oxide)/poly(butylene oxide) copolymers: toward the rational design of ordered mesoporous materials. The Journal of Physical Chemistry B, 2003, 107(48): 13368-13375. |
[26] | HUO Q, MARGOLESE D I,STUCKY G D.Surfactant control of phases in the synthesis of mesoporous silica-based materials.Chem. Mater., 1996, 8(5): 1147-1160. |
[27] | KRESGE C T, LEONOWICZ M E, ROTH W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359(6397): 710-712. |
[28] | GAO C, SAKAMOTO Y, SAKAMOTO K, et al. Synthesis and characterization of mesoporous silica AMS-10 with bicontinuous cubic Pn3m symmetry.Angew. Chem. Int. Ed., 2006, 45(26): 4295-4298. |
[29] | CHE S, GARCIA-BENNETT A E, YOKOI T, et al. A novel anionic surfactant templating route for synthesizing mesoporous silica with unique structure.Nat. Mater., 2003, 2(12): 801-805. |
[30] | GARCIA-BENNETT A E, KUPFERSCHMIDT N, SAKAMOTO Y, et al. Synthesis of mesocage structures by kinetic control of self-assembly in anionic surfactants. Angew. Chem. Int. Ed., 2005, 44(33): 5317-5322. |
[31] | ZHAO D, HUO Q, FENG J, et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc., 1998, 120(24): 6024-6036. |
[32] | FAN J, YU C, LEI J, et al. Low-temperature strategy to synthesize highly ordered mesoporous silicas with very large pores. J. Am. Chem. Soc., 2005, 127(31): 10794-10795. |
[33] | MA G, YAN X, LI Y, et al. Ordered nanoporous silica with periodic 30-60 nm pores as an effective support for gold nanoparticle catalysts with enhanced lifetime.J. Am. Chem. Soc., 2010, 132(28): 9596-9597. |
[34] | BRINKER C J, LU Y, SELLINGER A, et al. Evaporation-induced self-assembly: nanostructures made easy. Adv. Mater., 1999, 11(7): 579-585. |
[35] | DENG Y, CAI Y, SUN Z, et al. Controlled synthesis and functionalization of ordered large-pore mesoporous carbons. Adv. Funct. Mater., 2010, 20(21): 3658-3665. |
[36] | WEI J, WANG H, DENG Y, et al. Solvent evaporation induced aggregating assembly approach to three-dimensional ordered mesoporous silica with ultralarge accessible mesopores. J. Am. Chem. Soc., 2011, 133(50): 20369-20377. |
[37] | WEI J, YUE Q, SUN Z, et al. Synthesis of dual-mesoporous silica using non-ionic diblock copolymer and cationic surfactant as co-templates.Angew. Chem. Int. Ed., 2012, 51(25): 6149-6153. |
[38] | WANG C, WEI J, YUE Q, et al. A shear stress regulated assembly route to silica nanotubes and their closely packed hollow mesostructures. Angew. Chem. Int. Ed., 2013, 52(44): 11603-11606. |
[39] | YU K, SMARSLY B, BRINKER C J.Self-Assembly and characterization of mesostructured silica films with a 3D arrangement of isolated spherical mesopores.Adv. Funct. Mater., 2003, 13(1): 47-52. |
[40] | SMARSLY B, XOMERITAKIS G,YU K, et al. Microstructural characterization of polystyrene-block-poly(ethylene oxide)-templated silica films with cubic-ordered spherical mesopores. Langmuir, 2003, 19(18): 7295-7301. |
[41] | YU K, HURD A J, EISENBERG A, et al. Syntheses of silica/ polystyrene-block-poly (ethylene oxide) films with regular and reverse mesostructures of large characteristic length scales by solvent evaporation-induced self-assembly. Langmuir, 2001, 17(26): 7961-7965. |
[42] | DENG Y, YU T, WAN Y, et al. Ordered mesoporous silicas and carbons with large accessible pores templated from amphiphilic diblock copolymer poly(ethylene oxide)-b-polystyrene. J. Am. Chem. Soc., 2007, 129(6): 1690-1697. |
[43] | LIANG C, HONG K, GUIOCHON G A, et al. Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers.Angew. Chem. Int. Ed., 2004, 43(43): 5785-5789. |
[44] | RODRIGUEZ A T, LI X, WANG J, et al. Facile synthesis of nanostructured carbon through self-assembly between block copolymers and carbohydrates. Adv. Funct. Mater., 2007, 17(15): 2710-2716. |
[45] | DENG Y, LIU C, GU D, et al. Thick wall mesoporous carbons with a large pore structure templated from a weakly hydrophobic PEO-PMMA diblock copolymer. J. Mater. Chem., 2008, 18(1): 91-97. |
[46] | ZHANG J, DENG Y, WEI J, et al. Design of amphiphilic ABC triblock copolymer for templating synthesis of large-pore ordered mesoporous carbons with tunable pore wall thickness. Chem. Mater., 2009, 21(17): 3996-4005. |
[47] | WEI J, DENG Y,ZHANG J, et al. Large-pore ordered mesoporous carbons with tunable structures and pore sizes templated from poly(ethylene oxide)-b-poly(methyl methacrylate). Solid State Sci., 2011, 13(4): 784-792. |
[48] | SMARSLY B, GROSSO D, BREZESINSKI T, et al. Highly crystalline cubic mesoporous TiO2 with 10-nm pore diameter made with a new block copolymer template. Chem. Mater., 2004, 16(15): 2948-2952. |
[49] | BREZESINSKI T, GROENEWOLT M, GIBAUD A, et al. Evaporation-induced self-assembly (EISA) at its limit: ultrathin, crystalline patterns by templating of micellar monolayers. Adv. Mater., 2006, 18(17): 2260-2263. |
[50] | FATTAKHOVA-ROHLFING D, WARK M, BREZESINSKI T, et al. Highly organized Mesoporous TiO2 films with controlled crystallinity: A Li-insertion study. Adv. Funct. Mater., 2007, 17(1): 123-132. |
[51] | LEE J, CHRISTOPHER ORILALL M, WARREN S C, et al. Direct access to thermally stable and highly crystalline mesoporous transition-metal oxides with uniform pores. Nat. Mater., 2008, 7(3): 222-228. |
[52] | ZHANG J, DENG Y, GU D, et al. Ligand-assisted assemblyapproach to synthesize large-pore ordered mesoporous titania with thermally stable and crystalline Framework. Adv. Energy Mater., 2011, 1(2): 241-248. |
[53] | KUEMMEL M, GROSSO D,BOISSIRE C, et al. Thermally stable nanocrystalline γ-alumina layers with highly ordered 3D mesoporosity. Angew. Chem. Int. Ed., 2005, 44(29): 4589-4592. |
[54] | BREZESINSKI T, FATTAKHOVAβROHLFING D, SALLARD S, et al. Highly crystalline WO3 thin films with ordered 3D mesoporosity and improved electrochromic performance. Small, 2006, 2(10): 1203-1211. |
[55] | LI Y, LUO W, QIN N, et al. Highly ordered mesoporous tungsten oxides with a large pore size and crystalline framework for H2S sensing. Angew. Chem. Int. Ed., 2014, 53(34): 9035-9040. |
[56] | PARK T, AHN S, ROH D, et al. Multifunctional organized mesoporous tin oxide films templated by graft copolymers for dye-Sensitized solar cells. ChemSusChem, 2014, 7(7): 2037-2047. |
[57] | BREZESINSKI T, WANG J,SENTER R, et al. On the correlation between mechanical flexibility, nanoscale structure, and charge storage in periodic mesoporous CeO2 thin films. ACS Nano, 2010, 4(2): 967-977. |
[58] | BREZESINSKI T, ANTONIETTI M, GROENEWOLT M, et al. The generation of mesostructured crystalline CeO2, ZrO2 and CeO2-ZrO2 films using evaporation-induced self-assembly. New J. Chem., 2005, 29(1): 237-242. |
[59] | FANG H, WAN T, SHI W, et al. Design and synthesis of large-pore p6mm mesoporus zirconia thin films templated by a novel block copolymer. J. Non-Cryst. Solids, 2007, 353(16/17): 1657-1661. |
[60] | ORTEL E, REIER T, STRASSER P, et al. Mesoporous IrO2 films templated by PEO-PB-PEO block-copolymers: self-assembly, crystallization behavior, and electrocatalytic performance. Chem. Mater., 2011, 23(13): 3201-3209. |
[61] | YAMAUCHI Y, SUGIYAMA A, MORIMOTO R, et al. Mesoporous platinum with giant mesocages templated from lyotropic liquid crystals consisting of diblock copolymers. Angew. Chem. Int. Ed., 2008, 47(29): 5371-5373. |
[62] | TAKAI A, YAMAUCHI Y, KURODA K.Tailored electrochemical synthesis of 2D-hexagonal, lamellar, and cage-type mesostructured Pt thin films with extralarge periodicity.J. Am. Chem. Soc., 2010, 132(1): 208-214. |
[63] | LIN Y, DAGA V K, ANDERSON E R, et al. Nanoparticle-driven assembly of clock copolymers: a simple route to ordered hybrid materials. J. Am. Chem. Soc., 2011, 133(17): 6513-6516. |
[64] | HSUEH H Y, HUANG Y C, HO R M, et al. Nanoporous gyroid nickel from block copolymer templates via electroless plating. Adv. Mater., 2011, 23(27): 3041-3046. |
[1] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
[2] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[3] | CHEN Qiang, BAI Shuxin, YE Yicong. Highly Thermal Conductive Silicon Carbide Ceramics Matrix Composites for Thermal Management: a Review [J]. Journal of Inorganic Materials, 2023, 38(6): 634-646. |
[4] | LIN Junliang, WANG Zhanjie. Research Progress on Ferroelectric Superlattices [J]. Journal of Inorganic Materials, 2023, 38(6): 606-618. |
[5] | ZHANG Xiangsong, LIU Yetong, WANG Yongying, WU Zirui, LIU Zhenzhong, LI Yi, YANG Juan. Self-assembled Platinum-iridium Alloy Aerogels and Their Efficient Electrocatalytic Ammonia Oxidation Performance [J]. Journal of Inorganic Materials, 2023, 38(5): 511-520. |
[6] | NIU Jiaxue, SUN Si, LIU Pengfei, ZHANG Xiaodong, MU Xiaoyu. Copper-based Nanozymes: Properties and Applications in Biomedicine [J]. Journal of Inorganic Materials, 2023, 38(5): 489-502. |
[7] | YUAN Jingkun, XIONG Shufeng, CHEN Zhangwei. Research Trends and Challenges of Additive Manufacturing of Polymer-derived Ceramics [J]. Journal of Inorganic Materials, 2023, 38(5): 477-488. |
[8] | DU Jianyu, GE Chen. Recent Progress in Optoelectronic Artificial Synapse Devices [J]. Journal of Inorganic Materials, 2023, 38(4): 378-386. |
[9] | YANG Yang, CUI Hangyuan, ZHU Ying, WAN Changjin, WAN Qing. Research Progress of Flexible Neuromorphic Transistors [J]. Journal of Inorganic Materials, 2023, 38(4): 367-377. |
[10] | YOU Junqi, LI Ce, YANG Dongliang, SUN Linfeng. Double Dielectric Layer Metal-oxide Memristor: Design and Applications [J]. Journal of Inorganic Materials, 2023, 38(4): 387-398. |
[11] | LIN Siqi, LI Airan, FU Chenguang, LI Rongbing, JIN Min. Crystal Growth and Thermoelectric Properties of Zintl Phase Mg3X2 (X=Sb, Bi) Based Materials: a Review [J]. Journal of Inorganic Materials, 2023, 38(3): 270-279. |
[12] | CHEN Kunfeng, HU Qianyu, LIU Feng, XUE Dongfeng. Multi-scale Crystallization Materials: Advances in in-situ Characterization Techniques and Computational Simulations [J]. Journal of Inorganic Materials, 2023, 38(3): 256-269. |
[13] | ZHANG Chaoyi, TANG Huili, LI Xianke, WANG Qingguo, LUO Ping, WU Feng, ZHANG Chenbo, XUE Yanyan, XU Jun, HAN Jianfeng, LU Zhanwen. Research Progress of ScAlMgO4 Crystal: a Novel GaN and ZnO Substrate [J]. Journal of Inorganic Materials, 2023, 38(3): 228-242. |
[14] | QI Zhanguo, LIU Lei, WANG Shouzhi, WANG Guogong, YU Jiaoxian, WANG Zhongxin, DUAN Xiulan, XU Xiangang, ZHANG Lei. Progress in GaN Single Crystals: HVPE Growth and Doping [J]. Journal of Inorganic Materials, 2023, 38(3): 243-255. |
[15] | XIE Bing, CAI Jinxia, WANG Tongtong, LIU Zhiyong, JIANG Shenglin, ZHANG Haibo. Research Progress of Polymer-based Multilayer Composite Dielectrics with High Energy Storage Density [J]. Journal of Inorganic Materials, 2023, 38(2): 137-147. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||