Journal of Inorganic Materials ›› 2016, Vol. 31 ›› Issue (12): 1295-1300.DOI: 10.15541/jim20160089
• Orginal Article • Previous Articles Next Articles
YANG Yong-Bin1, LUO De-Li2, RAO Yong-Chu1, GUO Wen-Sheng2
Received:
2016-02-04
Revised:
2016-04-19
Published:
2016-12-16
Online:
2016-11-23
CLC Number:
YANG Yong-Bin, LUO De-Li, RAO Yong-Chu, GUO Wen-Sheng. Hydrogen Isotope Effects in Ti1.0Cr1.5V1.7 Alloy[J]. Journal of Inorganic Materials, 2016, 31(12): 1295-1300.
B | A | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |
Ti | 35.62 | 43.24 | 56.26 | 16.86 | 18.53 | 16.36 |
V | 33.05 | 26.88 | 21.07 | 45.94 | 44.75 | 46.28 |
Cr | 31.33 | 29.87 | 22.67 | 37.20 | 36.72 | 37.36 |
Table 1 Chemical composition of Ti1.0Cr1.5V1.7 analyzed by EDS/at%
B | A | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |
Ti | 35.62 | 43.24 | 56.26 | 16.86 | 18.53 | 16.36 |
V | 33.05 | 26.88 | 21.07 | 45.94 | 44.75 | 46.28 |
Cr | 31.33 | 29.87 | 22.67 | 37.20 | 36.72 | 37.36 |
Temperature /K | 77 | 103 | 133 | 155 | 173 | 183 | 193 | 203 | 213 | 243 | 273 | 303 | 333 | 373 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
αH-D | 1.02 | 1.21 | 1.13 | 1.05 | 1.54 | 1.81 | 1.93 | 2.05 | 2.29 | 1.89 | 1.6 | 1.41 | 1.3 | 1.17 |
Table 2 Separation factors with different temperature (0.3 MPa, D 3%)
Temperature /K | 77 | 103 | 133 | 155 | 173 | 183 | 193 | 203 | 213 | 243 | 273 | 303 | 333 | 373 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
αH-D | 1.02 | 1.21 | 1.13 | 1.05 | 1.54 | 1.81 | 1.93 | 2.05 | 2.29 | 1.89 | 1.6 | 1.41 | 1.3 | 1.17 |
Materials | Temperature /K | A | B | Reference |
---|---|---|---|---|
Pd | 175-330 | -0.023 | -202 | [19] |
TiMn1.5 | 195-296 | -0.75 | 295 | [19] |
LaNi5 | 223-323 | -0.53 | 193 | [19] |
ZrMn2 | 240-300 | -0.477 | 240 | [19] |
ZrCr2 | 273-373 | -1.5 | 580 | [19] |
Ti1.0Cr1.5V1.7 | 213-373 | -0.74 | 335 | This work |
Table 3 Values of A and B for different materials
Materials | Temperature /K | A | B | Reference |
---|---|---|---|---|
Pd | 175-330 | -0.023 | -202 | [19] |
TiMn1.5 | 195-296 | -0.75 | 295 | [19] |
LaNi5 | 223-323 | -0.53 | 193 | [19] |
ZrMn2 | 240-300 | -0.477 | 240 | [19] |
ZrCr2 | 273-373 | -1.5 | 580 | [19] |
Ti1.0Cr1.5V1.7 | 213-373 | -0.74 | 335 | This work |
[1] | KOU HUA-QIN, HUANG ZHI-YONG, LUO WEN-HUA,et al. Experimental study on full-scale ZrCo and depleted uranium beds applied for fast recovery and delivery of hydrogen isotopes . Appl. Energy, 2015, 145: 27-35. |
[2] | LUO DE-LI, SONG JIANG-FENG, HUANG GUO-QIANG,et al. Progress of China’s TBM tritium technology. Fusion Eng. Des., 2012, 87(7/8): 1261-1267. |
[3] | FUKADA S, FUCHINOUE K, NISHIKAWA M.Isotope separation factor and isotopic exchange rate between hydrogen and deuterium of palladium.J. Nucl. Mater., 1995, 226(3): 311-318. |
[4] | LUO WEI-FANG, COWGILL D F.Separation factors for hydrogen isotopes in palladium hydride.J. Phys. Chem. C, 2013, 117(27): 13861-13871. |
[5] | WISWALL R H, REILLY J J.Inverse hydrogen isotope effects in some metal hydride systems.Inorg. Chem., 1972, 11(7): 1691-1696. |
[6] | ALDRIDGE F T.Gas chromatographic separation of hydrogen isotopes using metal hydrides. J.Less-Common Met., 1985, 108: 131-150. |
[7] | ANDREEV B M, MAGOMEDBEKOV E, SELIVANENKO I L.Separation of isotopes of light elements in a gas-solid phase system. 1. Isotope effects in a hydrogen-metal hydride and intermetallic-compound hydride system.Atom. Energy, 1998, 84(2): 114-121. |
[8] | SICKING G, MAGOMEDBEKOV E, HEMPELMANN R.Tracer experiments on the exchange equilibrium of tritium between hydrogen gas and the hydrogen-storage material TiMnl.5-hydride.Ber. Bunsenges . Phys. Chem., 1981, 85: 686-692. |
[9] | JAT R A, SAWANT S G, RAJAN M B,et al.Hydrogen isotope effect on storage behavior of U2Ti and UZr2.3. J. Nucl. Mater., 2013, 443: 316-320. |
[10] | TANAKA J, WISWALL R H, REILLY J J.Hydrogen isotope effects in titanium alloy hydrides.Inorganic Chemistry, 1978, 17(2): 498-500. |
[11] | KUMAR A, SHASHIKALA K, BANERJEE S,et al. Effect of cycling on hydrogen storage properties of Ti2VCr alloy. Int. J. Hydrogen Energy, 2012, 37(4): 3677-3682. |
[12] | AOKI M, NORITAKE T, ITO A,et al. Improvement of cyclic durability of Ti-V-Cr alloy by Fe substitution. Int. J. Hydrogen Energy, 2011, 36(19): 12329-12332. |
[13] | KURIIWA T, MARUYAMA T, KAMEGAWA A,et al. Effects of V content on hydrogen storage properties of V-Ti-Cr alloys with high desorption pressure. Int. J. Hydrogen Energy, 2010, 35(17): 9082-9087. |
[14] | AKIBA E, IBA H.Hydrogen absorption by laves phase related BCC solid solution.Intermetallics, 1998, 6(6): 461-470. |
[15] | PEI P, SONG X P, LIU J,et al. The effect of rapid solidification on the microstructure and hydrogen storage properties of V35Ti25Cr40 hydrogen storage alloy. Int. J. Hydrogen Energy, 2009, 34(19): 8094-8100. |
[16] | LIN H C, LIN K M, WU K C,et al. Cyclic hydrogen absorption- desorption characteristics of TiCrV and Ti0.8Cr1.2V alloys. Int. J. Hydrogen Energy, 2007, 32(18): 4966-4972. |
[17] | YU X B, CHEN J Z, WU Z,et al. Effect of Cr content on hydrogen storage properties for Ti-V based BCC-phase alloys. Int. J. Hydrogen Energy, 2004, 29(13): 1377-1381. |
[18] | YANG YONG-BIN, LUO DE-LI, GUO WEN-SHEN,et al. Hydrogen isotope effects in Ti-V-Cr alloy hydrides. J. Phys. Chem. C, 2015, 119(7): 3481-3487. |
[19] | ANDREEV B M, MAGOMEDBEKOV E P, SICKING G H.Interaction of Hydrogen Isotopes with Transition Metals and Intermetallic Compounds. Springer-Verlag: Berlin, Heidelberg, NY, 1996. |
[20] | SAZONOV A B, MAGOMEDBEKOV E P.Concentration dependence of the separation factor of hydrogen isotopes in ternary and pseudoternary systems H2-H-X-Y-H.Atom. Energy, 1999, 87(1): 519-525. |
[21] | UREY H C, RITTENBERG D.Some thermodynamic properties of the (HH2)-H-1, (HH2)-H-2 molecules and compounds containing the H-2 atom.J. Chem. Phys., 1933, 1(2): 137-143. |
[1] | WANG Mengtao, SUO Jun, FANG Dong, Yi Jianhong, LIU Yichun, Olim RUZIMURADOVC. Visible-Light Catalytic Performance of ITO/TiO2 Nanotube Array Composite [J]. Journal of Inorganic Materials, 0, (): 178-. |
[2] | SUN Chen, ZHAO Kunfeng, YI Zhiguo. Research Progress in Catalytic Total Oxidation of Methane [J]. Journal of Inorganic Materials, 0, (): 117-. |
[3] | LI Yuejun, CAO Tieping, SUN Dawei. Bi4O5Br2/CeO2 Composite with S-scheme Heterojunction: Construction and Its CO2 Reduction Performance [J]. Journal of Inorganic Materials, 0, (): 3-. |
[4] | TUERHONG Munire, ZHAO Honggang, MA Yuhua, QI Xianhui, LI Yuchen, YAN Chenxiang, LI Jiawen, CHEN Ping. Construction and Photocatalytic Activity of Monoclinic Tungsten Oxide/Red Phosphorus Step-scheme Heterojunction [J]. Journal of Inorganic Materials, 2023, 38(6): 701-707. |
[5] | GAN Hongyu, FENG Yan, YANG Dehong, TIAN Yubin, LI Yang, XING Tao, LI Zhi, ZHAO Xuebo, DAI Pengcheng. Heteroatom-doped Biochar for Direct Dehydrogenation of Propane to Propylene [J]. Journal of Inorganic Materials, 2022, 37(10): 1058-1064. |
[6] | MA Xinquan, LI Xibao, CHEN Zhi, FENG Zhijun, HUANG Juntong. BiOBr/ZnMoO4 Step-scheme Heterojunction: Construction and Photocatalytic Degradation Properties [J]. Journal of Inorganic Materials, 2023, 38(1): 62-70. |
[7] | LIU Xuechen, ZENG Di, ZHOU Yuanyi, WANG Haipeng, ZHANG Ling, WANG Wenzhong. Selective Oxidation of Biomass over Modified Carbon Nitride Photocatalysts [J]. Journal of Inorganic Materials, 2022, 37(1): 38-44. |
[8] | CHEN Xiaomei, CHEN Ying, YUAN Xia. Decomposition of Cyclohexyl Hydroperoxide Catalyzed by Core-shell Material Co3O4@SiO2 [J]. Journal of Inorganic Materials, 2022, 37(1): 65-71. |
[9] | LI Tie, LI Yue, WANG Yingyi, ZHANG Ting. Preparation and Catalytic Properties of Graphene-Bismuth Ferrite Nanocrystal Nanocomposite [J]. Journal of Inorganic Materials, 2021, 36(7): 725-732. |
[10] | FAN Jun, JIANG Xue, JIAO Yi, CHEN Yusheng, WANG Jianli, CHEN Yaoqiang. Effect of Different Alkali-assisted Deposition Precipitation Methods on the Durability of Three-way Catalysts [J]. Journal of Inorganic Materials, 2021, 36(6): 659-664. |
[11] | AN Weijia, LI Jing, WANG Shuyao, HU Jinshan, LIN Zaiyuan, CUI Wenquan, LIU Li, XIE Jun, LIANG Yinghua. Fe(III)/rGO/Bi2MoO6 Composite Photocatalyst Preparation and Phenol Degradation by Photocatalytic Fenton Synergy [J]. Journal of Inorganic Materials, 2021, 36(6): 615-622. |
[12] | XIAO Xiang, GUO Shaoke, DING Cheng, ZHANG Zhijie, HUANG Hairui, XU Jiayue. CsPbBr3@TiO2 Core-shell Structure Nanocomposite as Water Stable and Efficient Visible-light-driven Photocatalyst [J]. Journal of Inorganic Materials, 2021, 36(5): 507-512. |
[13] | LIU Yaxin, WANG Min, SHEN Meng, WANG Qiang, ZHANG Lingxia. Bi-doped Ceria with Increased Oxygen Vacancy for Enhanced CO2 Photoreduction Performance [J]. Journal of Inorganic Materials, 2021, 36(1): 88-94. |
[14] | WANG Juhan,WEN Xiong,LIU Chengchao,ZHANG Yuhua,ZHAO Yanxi,LI Jinlin. Preparation and Fischer-Tropsch Synthesis Performance of Hierarchical Co/Al-SiO2 Catalyst [J]. Journal of Inorganic Materials, 2020, 35(9): 999-1004. |
[15] | DING Sheng, NING Kai, YUAN Binxia, PAN Weiguo, YIN Shibin, LIU Jianfeng. Durability of Fe-N/C Catalysts with Different Nanostructures for Electrochemical Oxygen Reduction in Alkaline Solution [J]. Journal of Inorganic Materials, 2020, 35(8): 953-958. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||