Journal of Inorganic Materials ›› 2016, Vol. 31 ›› Issue (7): 673-680.DOI: 10.15541/jim20150641
• Orginal Article • Next Articles
XING Wei-Wei1,2, ZHANG Chen-Xiao1, FAN Shang-Chun1,2, LI-Cheng1
Received:
2015-12-21
Revised:
2016-01-30
Published:
2016-07-20
Online:
2016-06-22
Supported by:
CLC Number:
XING Wei-Wei, ZHANG Chen-Xiao, FAN Shang-Chun, LI-Cheng. Research Progress on Resonant Characteristics of Graphene[J]. Journal of Inorganic Materials, 2016, 31(7): 673-680.
[1] | NOVOSELOV K S, GEIM A K, MOROZOV S V, et al.Electric field effect in atomically thin carbon films.Science, 2004, 306(5696): 666-669. |
[2] | STOLYAROVA E, RIM K T, RYU S, et al.High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface.Proceedings of the National Academy of Sciences, 2007, 104(22): 9209-9212. |
[3] | SCARPA F, ADHIKARI S, GIL A J, et al.The bending of single layer graphene sheets: the lattice versus continuum approach.Nanotechnology, 2010, 21(12): 125702. |
[4] | DRESSELHAUS M S, DRESSELHAUS G, SAITO R.Physics of carbon nanotubes.Carbon, 1995, 33(7): 883-891. |
[5] | BUNCH J S, VAN DER ZANDE A M, VERBRIDGE S S, et al. Electromechanical resonators from graphene sheets.Science, 2007, 315(5811): 490-493. |
[6] | GEIM A K.Graphene: status and prospects.Science, 2009, 324(5934): 1530-1534. |
[7] | ROBINSON J T, ZALALUTDINOV M, BALDWIN J W, et al.Wafer-scale reduced graphene oxide films for nanomechanical devices.Nano Lett., 2008, 8(10): 3441-3445. |
[8] | HUTCHINSON A B, TRUITT P A, SCHWAB K C, et al.Dissipation in nanocrystalline-diamond nanomechanical resonators.Appl. Phys. Lett., 2004, 84(6): 972-974. |
[9] | SEKARIC L, PARPIA J M, CRAIGHEAD H G, et al.Nanomechanical resonant structures in nanocrystalline diamond.Appl. Phys. Lett., 2002, 81(23): 4455-4457. |
[10] | GARCIA-SANCHEZ D, VAN DER ZANDE A M, PAULO A S, et al. Imaging mechanical vibrations in suspended graphene sheets.Nano Lett., 2008, 8(5): 1399-1403. |
[11] | CHEN C, ROSENBLATT S, BOLOTIN K I, et al.Performance of monolayer graphene nanomechanical resonators with electrical readout.Nature Nanotech., 2009, 4(12): 861-867. |
[12] | ZANDE A M, BARTON R A, ALDEN J S, et al.Large-scale arrays of single-layer graphene resonators.Nano Lett., 2010, 10(12): 4869-4873. |
[13] | TIMOSHENKO S, WOINOWSKY-KRIEGER S.Theory of Plates and Shells. New York: McGraw-hill, 1959. |
[14] | BAUCHAU O A, CRAIG J I.Structural Analysis: with Applications to Aerospace Structures. Netherlands: Springer, 2009, 819-821. |
[15] | REDDY J N.A general non-linear third-order theory of plates with moderate thickness.Int. J. Solids Struct., 1990, 25(6): 677-686. |
[16] | MURMU T, PRADHAN S C.Vibration analysis of nano-single- layered graphene sheets embedded in elastic medium based on nonlocal elasticity theory.J. Appl. Phys., 2009, 105(6): 064319. |
[17] | ARASH B, WANG Q.Vibration of single-and double-layered graphene sheets.J. Nanotechnol. Eng. Med. , 2011, 2(1): 011012. |
[18] | CHOWDHURY R, ADHIKARI S, SCARPA F, et al.Transverse vibration of single-layer graphene sheets.J. Phys. D: Appl. Phys., 2011, 44(20): 205401. |
[19] | SAMAEI A T, ALIHA M R M, MIRSAYAR M M. Frequency analysis of a graphene sheet embedded in an elastic medium with consideration of small scale.Mater. Phys. Mech., 2015, 22: 125-135. |
[20] | ANSARI R, SAHMANI S, ARASH B.Nonlocal plate model for free vibrations of single-layered graphene sheets.Phys. Lett. A, 2010, 375(1): 53-62. |
[21] | SHEN L E, SHEN H S, ZHANG C L.Nonlocal plate model for nonlinear vibration of single layer graphene sheets in thermal environments.Comp. Mater. Sci., 2010, 48(3): 680-685. |
[22] | CHANG W J, LEE H L.Mass detection using a double-layer circular graphene-based nanomechanical resonator.J. Appl. Phys., 2014, 116(3): 034303. |
[23] | ERINGEN A C.On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves.J. Appl. Phys., 1983, 54(9): 4703-4710. |
[24] | MOHAMMADIMEHR M, NAJAFABADI M M M, NASIRI H, et al. Surface Stress Effects on the Free Vibration and Bending Analysis of the Nonlocal Single-layer Graphene Sheet Embedded in an Elastic Medium Using Energy Method. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 2014, 1740349914559042. |
[25] | FAZELZADEH S A, GHAVANLOO E.Nanoscale mass sensing based on vibration of single-layered graphene sheet in thermal environments.Acta. Mech. Sinica., 2014, 30(1): 84-91. |
[26] | KARLIČIĆ D, KOZIĆ P, ADHIKARI S, et al. Nonlocal mass-nanosensor model based on the damped vibration of single- layer graphene sheet influenced by in-plane magnetic field.Int. J. Mech. Sci., 2015, 96: 132-142. |
[27] | AKGÖZ B, CIVALEK Ö. Free vibration analysis for single- layered graphene sheets in an elastic matrix via modified couple stress theory.Mater. Design., 2012, 42: 164-171. |
[28] | TADMOR E B, ORTIZ M, PHILLIPS R.Quasicontinuum analysis of defects in solids.Philos. Mag. A, 1996, 73(6): 1529-1563. |
[29] | FRIESECKE G, THEIL F.Convexity conditions and existence theorems in nonlinear elasticity.J. Nonlinear Sci., 2002, 12: 445-478. |
[30] | STEINMANN P, ELIZONDO A, SUNYK R.Studies of validity of the Cauchy-Born rule by direct comparison of continuum and atomistic modelling.Modell. Simul. Mater. Sci. Eng., 2007, 15(1): S271. |
[31] | RAPPÉ A K, CASEWIT C J, COLWELL K S, et al.UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations.J. Am. Chem. Soc., 1992, 114(25): 10024-10035. |
[32] | CORNELL W D, CIEPLAK P, BAYLY C I, et al.A second generation force field for the simulation of proteins, nucleic acids, and organic molecules.J. Am. Chem. Soc., 1995, 117: 5179-5197. |
[33] | LI C, CHOU T W.A structural mechanics approach for the analysis of carbon nanotubes.Int. J. Solid Struct., 40(10): 2487-2499. |
[34] | GELIN B R.Molecular Modeling of Polymer Structures and Properties. New York: Gardner, 1994. |
[35] | BELYTSCHKO T, XIAO S P, SCHATZ G C, et al.Atomistic simulations of nanotube fracture.Phys. Rev. B, 2002, 65(23): 235430. |
[36] | SAKHAEE-POUR A, AHMADIAN M T, VAFAI A.Potential application of single-layered graphene sheet as strain sensor.Solid State Commun., 2008, 147(7): 336-340. |
[37] | ROUHI S, ANSARI R.Atomistic finite element model for axial buckling and vibration analysis of single-layered graphene sheets.Physica E, 2012, 44(4): 764-772. |
[38] | BAYKASOGLU C, MUGAN A.Dynamic analysis of single-layer graphene sheets.Comp. Mater. Sci., 2012, 55: 228-236. |
[39] | ODEGARD G M, GATES T S, WISE K E, et al.Constitutive modeling of nanotube-reinforced polymer composites.Comp. Sci. Technol., 2003, 63(11): 1671-1687. |
[40] | REDDY C D, RAJENDRAN S, LIEW K M.Equilibrium configuration and continuum elastic properties of finite sized graphene.Int. J. Nanosci., 2006, 17(3): 864. |
[41] | SCARPA F, ADHIKARI S, PHANI A S.Effective elastic mechanical properties of single layer graphene sheets.Nanotechnology, 2009, 20(6): 065709. |
[42] | GEORGANTZINOS S K, GIANNOPOULOS G I, ANIFANTIS N K.An efficient numerical model for vibration analysis of single- walled carbon nanotubes.Comput. Mech., 2009, 43(6): 731-741. |
[43] | MAHMOUDINEZHAD E, ANSARI R.Vibration analysis of circular and square single-layered graphene sheets: An accurate spring mass mode.Physica E, 2013, 47: 12-16. |
[44] | KIM M H, KIM D, CHOI J B, et al.Vibrational characteristics of graphene sheets elucidated using an elastic network model.Phys. Chem. Chem. Phys., 2014, 16(29): 15263-15271. |
[45] | TSIAMAKI A S, GEORGANTZINOS S K, ANIFANTIS N K.Monolayer graphene resonators for mass detection: a structural mechanics feasibility study.Sensor. Actuat. A-Phys., 2014, 217: 29-38. |
[46] | ATALAYA J, ISACSSON A, KINARET J M.Continuum elastic modeling of graphene resonators.Nano Lett., 2008, 8(12): 4196-4200. |
[47] | DAI M D, KIM C W, EOM K.Nonlinear vibration behavior of graphene resonators and their applications in sensitive mass detection.Nanoscale Res. Lett., 2012, 7(1): 1-10. |
[48] | VAN LIER G, VAN ALSENOY C, VAN DOREN V, et al.Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene. Chem.Phys. Lett., 2000, 326(1): 181-185. |
[49] | Kudin K N, Scuseria G E, Yakobson B I.C2F, BN, and C nanoshell elasticity from ab initio computations.Phys. Rev. B, 2001, 64(23): 235406. |
[50] | LIU F, MING P, LI J.Ab initio calculation of ideal strength and phonon instability of graphene under tension.Phys. Rev. B, 2007, 76(6): 064120. |
[51] | GAO Y, HAO P.Mechanical properties of monolayer graphene under tensile and compressive loading.Physica E, 2009, 41(8): 1561-1566. |
[52] | RASULI R, AHADIAN M M.Mechanical properties of graphene cantilever from atomic force microscopy and density functional theory.Nanotechnology, 2010, 21(18): 185503. |
[53] | ZAKHARCHENKO K V, KATSNELSON M I, FASOLINO A.Finite temperature lattice properties of graphene beyond the quasiharmonic approximation.Phys. Rev. Lett., 2009, 102(4): 046808. |
[54] | CHEN S, CHRZAN D C.Monte Carlo simulation of temperature- dependent elastic properties of graphene.Phys. Rev. B, 2011, 84(19): 195409. |
[55] | ALDER B J, WAINWRIGHT T E.Phase transition for a hard sphere system.J. Chem. Phys., 1957, 27(5): 1208. |
[56] | TERSOFF J.New empirical approach for the structure and energy of covalent systems.Phys. Rev. B, 1988, 37(12): 6991. |
[57] | BRENNER D W.Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films.Phys. Rev. B, 1990, 42(15): 9458. |
[58] | BRENNER D W, SHENDEROVA O A, HARRISON J A, et al.A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons.J. Phys.: Condens. Matter., 2002, 14(4): 783. |
[59] | STUART S J, TUTEIN A B, HARRISON J A.A reactive potential for hydrocarbons with intermolecular interactions.J. Chem. Phys., 2000, 112(14): 6472-6486. |
[60] | GU F, ZHANG J H, YANG L J, et al. Molecular dynamics simulation of resonance properties of strain graphene nanoribbons. Acta Phys. Sin., 2011, 60(5): 523-531. |
[61] | LI Y, QIU X M, YANG F, et al.Ultra-high sensitivity of super carbon-nanotube-based mass and strain sensors.Nanotechnology, 2008, 19(16): 165502. |
[62] | KANG J W, KIM H W, KIM K S, et al.Molecular dynamics modeling and simulation of a graphene-based nanoelectromechanical resonator.Curr. Appl. Phys., 2013, 13(4): 789-794. |
[63] | 纪翔. 石墨烯纳米带谐振特性的基础研究. 西安: 西安电子科技大学, 2013. |
[64] | KWON O K, KIM K S, PARK J, et al.Molecular dynamics modeling and simulations of graphene-nanoribbon-resonator-based nanobalance as yoctogram resolution detector.Comp. Mater. Sci., 2013, 67: 329-333. |
[65] | KWON, OH KUEN, HO JUNG HWANG, et al. Molecular dynamics simulation study on cross-type graphene resonator. Comp. Mater. Sci., 2014, 82: 280-285. |
[1] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
[2] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[3] | CHEN Qiang, BAI Shuxin, YE Yicong. Highly Thermal Conductive Silicon Carbide Ceramics Matrix Composites for Thermal Management: a Review [J]. Journal of Inorganic Materials, 2023, 38(6): 634-646. |
[4] | LIN Junliang, WANG Zhanjie. Research Progress on Ferroelectric Superlattices [J]. Journal of Inorganic Materials, 2023, 38(6): 606-618. |
[5] | NIU Jiaxue, SUN Si, LIU Pengfei, ZHANG Xiaodong, MU Xiaoyu. Copper-based Nanozymes: Properties and Applications in Biomedicine [J]. Journal of Inorganic Materials, 2023, 38(5): 489-502. |
[6] | YUAN Jingkun, XIONG Shufeng, CHEN Zhangwei. Research Trends and Challenges of Additive Manufacturing of Polymer-derived Ceramics [J]. Journal of Inorganic Materials, 2023, 38(5): 477-488. |
[7] | DU Jianyu, GE Chen. Recent Progress in Optoelectronic Artificial Synapse Devices [J]. Journal of Inorganic Materials, 2023, 38(4): 378-386. |
[8] | YANG Yang, CUI Hangyuan, ZHU Ying, WAN Changjin, WAN Qing. Research Progress of Flexible Neuromorphic Transistors [J]. Journal of Inorganic Materials, 2023, 38(4): 367-377. |
[9] | YOU Junqi, LI Ce, YANG Dongliang, SUN Linfeng. Double Dielectric Layer Metal-oxide Memristor: Design and Applications [J]. Journal of Inorganic Materials, 2023, 38(4): 387-398. |
[10] | CHEN Kunfeng, HU Qianyu, LIU Feng, XUE Dongfeng. Multi-scale Crystallization Materials: Advances in in-situ Characterization Techniques and Computational Simulations [J]. Journal of Inorganic Materials, 2023, 38(3): 256-269. |
[11] | ZHANG Chaoyi, TANG Huili, LI Xianke, WANG Qingguo, LUO Ping, WU Feng, ZHANG Chenbo, XUE Yanyan, XU Jun, HAN Jianfeng, LU Zhanwen. Research Progress of ScAlMgO4 Crystal: a Novel GaN and ZnO Substrate [J]. Journal of Inorganic Materials, 2023, 38(3): 228-242. |
[12] | QI Zhanguo, LIU Lei, WANG Shouzhi, WANG Guogong, YU Jiaoxian, WANG Zhongxin, DUAN Xiulan, XU Xiangang, ZHANG Lei. Progress in GaN Single Crystals: HVPE Growth and Doping [J]. Journal of Inorganic Materials, 2023, 38(3): 243-255. |
[13] | LIN Siqi, LI Airan, FU Chenguang, LI Rongbing, JIN Min. Crystal Growth and Thermoelectric Properties of Zintl Phase Mg3X2 (X=Sb, Bi) Based Materials: a Review [J]. Journal of Inorganic Materials, 2023, 38(3): 270-279. |
[14] | LIU Yan, ZHANG Keying, LI Tianyu, ZHOU Bo, LIU Xuejian, HUANG Zhengren. Electric-field Assisted Joining Technology for the Ceramics Materials: Current Status and Development Trend [J]. Journal of Inorganic Materials, 2023, 38(2): 113-124. |
[15] | XIE Bing, CAI Jinxia, WANG Tongtong, LIU Zhiyong, JIANG Shenglin, ZHANG Haibo. Research Progress of Polymer-based Multilayer Composite Dielectrics with High Energy Storage Density [J]. Journal of Inorganic Materials, 2023, 38(2): 137-147. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||