Journal of Inorganic Materials ›› 2016, Vol. 31 ›› Issue (2): 171-179.DOI: 10.15541/jim20150338
• Orginal Article • Previous Articles Next Articles
SHAO Dong-Yuan, CHENG Nan-Pu, CHEN Jing-Jing, LI Xiao, CHEN Zhi-Qian, LI Chun-Mei, HUI Qun
Received:
2015-07-14
Revised:
2015-10-19
Published:
2016-02-20
Online:
2016-01-15
About author:
SHAO Dong-Yuan. E-mail: sdy1988719@swu.edu.cn
Supported by:
CLC Number:
SHAO Dong-Yuan, CHENG Nan-Pu, CHEN Jing-Jing, LI Xiao, CHEN Zhi-Qian, LI Chun-Mei, HUI Qun. Electronic Structure, Plane Acoustic Velocity and Refractive Property of LiNbO3 and LiTaO3[J]. Journal of Inorganic Materials, 2016, 31(2): 171-179.
Material | Method | (a=b)/nm | c/nm | ρ/(g·cm-3) | V/nm3 |
---|---|---|---|---|---|
LiNbO3 | Exp | 0.51483 | 1.3863 | 0.131821[ | |
LDA | 0.52332 | 1.4131 | 4.395 | 0.33514 | |
GGA | 0.52447 | 1.4222 | 4.251 | 0.33999 | |
PBEsol | 0.51531 | 1.3837 | 4.630 | 0.31821[ | |
LiTaO3 | Exp | 0.5147 | 1.3766 | 0.31585[ | |
GGA | 0.5104 | 1.3546 | 7.434 | 0.32610 | |
LDA | 5.050 | 13.386 | 7.433 | 0.29578 | |
LDA | 5.129 | 13.938 | 7.400 | 0.31763[ |
Table 1 Lattice constants (a, c), density ρ and volume V
Material | Method | (a=b)/nm | c/nm | ρ/(g·cm-3) | V/nm3 |
---|---|---|---|---|---|
LiNbO3 | Exp | 0.51483 | 1.3863 | 0.131821[ | |
LDA | 0.52332 | 1.4131 | 4.395 | 0.33514 | |
GGA | 0.52447 | 1.4222 | 4.251 | 0.33999 | |
PBEsol | 0.51531 | 1.3837 | 4.630 | 0.31821[ | |
LiTaO3 | Exp | 0.5147 | 1.3766 | 0.31585[ | |
GGA | 0.5104 | 1.3546 | 7.434 | 0.32610 | |
LDA | 5.050 | 13.386 | 7.433 | 0.29578 | |
LDA | 5.129 | 13.938 | 7.400 | 0.31763[ |
Material | Atom | s | p | d | Total | Charge | Bond | L1/nm | P1 | L2/nm | P2 |
---|---|---|---|---|---|---|---|---|---|---|---|
LiNbO3 | Li | -0.17 | 0 | 0 | -0.17 | 1.17 | O—Nb | 0.1971 | 0.79 | 0.2184 | 0.37 |
O | 1.87 | 4.87 | 0 | 6.75 | -0.75 | O—Li | 0.2084 | -0.06 | 0.2289 | 0.01 | |
Nb | 0.36 | 0.38 | 3.20 | 3.93 | 1.07 | O—O | 0.2869 | ||||
LiTaO3 | Li | 0.22 | 0 | 0 | -0.22 | 1.22 | O—Ta | 0.1852 | 0.82 | 0.2047 | 0.45 |
O | 1.84 | 4.99 | 0 | 6.83 | -0.83 | O—Li | 0.2093 | -0.08 | 0.2230 | 0.01 | |
Ta | 0.38 | 0.41 | 2.94 | 3.73 | 1.27 | O—O | 0.2669 |
Table 2 Atomic orbital populations, atomic charges, bond lengths (L1, L2), and band populations (P1, P2) of LiNbO3 and LiTaO3
Material | Atom | s | p | d | Total | Charge | Bond | L1/nm | P1 | L2/nm | P2 |
---|---|---|---|---|---|---|---|---|---|---|---|
LiNbO3 | Li | -0.17 | 0 | 0 | -0.17 | 1.17 | O—Nb | 0.1971 | 0.79 | 0.2184 | 0.37 |
O | 1.87 | 4.87 | 0 | 6.75 | -0.75 | O—Li | 0.2084 | -0.06 | 0.2289 | 0.01 | |
Nb | 0.36 | 0.38 | 3.20 | 3.93 | 1.07 | O—O | 0.2869 | ||||
LiTaO3 | Li | 0.22 | 0 | 0 | -0.22 | 1.22 | O—Ta | 0.1852 | 0.82 | 0.2047 | 0.45 |
O | 1.84 | 4.99 | 0 | 6.83 | -0.83 | O—Li | 0.2093 | -0.08 | 0.2230 | 0.01 | |
Ta | 0.38 | 0.41 | 2.94 | 3.73 | 1.27 | O—O | 0.2669 |
Material | Method | C11/GPa | C12/GPa | C13/GPa | C14/GPa | C33/GPa | C44/GPa | C66/GPa |
---|---|---|---|---|---|---|---|---|
LiNbO3 | LDA | 191.7 | 61.8 | 71.7 | 4.6 | 205.1 | 57.7 | 64.9 |
GGA | 160.11 | 9.37 | 19.36 | -12.04 | 161.77 | 63.50 | 75.37 | |
Other work | 203.0 | 53.0 | 75.0 | 9 | 245.0 | 60 | 75[ | |
196.9 | 54.8 | 66.4 | 0 | 225.4 | 58.8[ | |||
LiTaO3 | GGA | 193.6 | 44.1 | 58.9 | 21.7 | 292.1 | 39.3 | 74.7 |
LDA | 235.7 | 64.1 | 97.6 | 11.6 | 256.1 | 60.7 | 85.8 | |
Other work | 233.3 | 47.0 | 80.0 | -11.0 | 275.0 | 94.0[ | ||
235.2 | 63.8 | 87.7 | 0 | 264.1 | 102.1[ |
Table 3 Elastic constants Cij of LiNbO3 and LiTaO3
Material | Method | C11/GPa | C12/GPa | C13/GPa | C14/GPa | C33/GPa | C44/GPa | C66/GPa |
---|---|---|---|---|---|---|---|---|
LiNbO3 | LDA | 191.7 | 61.8 | 71.7 | 4.6 | 205.1 | 57.7 | 64.9 |
GGA | 160.11 | 9.37 | 19.36 | -12.04 | 161.77 | 63.50 | 75.37 | |
Other work | 203.0 | 53.0 | 75.0 | 9 | 245.0 | 60 | 75[ | |
196.9 | 54.8 | 66.4 | 0 | 225.4 | 58.8[ | |||
LiTaO3 | GGA | 193.6 | 44.1 | 58.9 | 21.7 | 292.1 | 39.3 | 74.7 |
LDA | 235.7 | 64.1 | 97.6 | 11.6 | 256.1 | 60.7 | 85.8 | |
Other work | 233.3 | 47.0 | 80.0 | -11.0 | 275.0 | 94.0[ | ||
235.2 | 63.8 | 87.7 | 0 | 264.1 | 102.1[ |
Fig. 5 The 3-D planar acoustic velocities, in which a and b are transverse wave models, and c longitudinal model, and the plane projected pictures of LiNbO3 with red and blue lines indicating transverse wave velocities, and the green line indicating longitudinal wave velocity (LDA)
Fig. 6 The 3-D plane acoustic velocities, in which a and b are transverse wave models, and c longitudinal model, and the planar projected picture of LiTaO3 crystal with red and blue lines indicating transverse wave velocities, and the green line indicating longitudinal wave velocity (LDA)
Materal | Method | Index | ε(0) | n | ε(∞) |
---|---|---|---|---|---|
LiNbO3 | GGA | 11 | 43.6779 | 2.5401 | 6.4557 |
33 | 30.6094 | 2.4925 | 6.2126 | ||
LDA | 11 | 43.6779 | 2.5587 | 6.5467 | |
33 | 30.6094 | 2.5408 | 6.4980 | ||
Other Work[ | 11 | 50.42 | 2.58 | 6.68 | |
33 | 34.16 | 2.57 | 6.58 | ||
11 | 41.50 | 2.29 | 5.00 | ||
33 | 26.00 | 2.20 | 4.60 | ||
LiTaO3 | GGA | 11 | 47.0227 | 2.1751 | 4.7311 |
33 | 31.9626 | 2.2199 | 4.8637 | ||
LDA | 11 | 34.1709 | 2.2054 | 4.9278 | |
33 | 34.8047 | 2.2236 | 4.9446 |
Table 5 Calculated static dielectric constants ε (0), static refractive indices n and optical permittivity ε (∞)
Materal | Method | Index | ε(0) | n | ε(∞) |
---|---|---|---|---|---|
LiNbO3 | GGA | 11 | 43.6779 | 2.5401 | 6.4557 |
33 | 30.6094 | 2.4925 | 6.2126 | ||
LDA | 11 | 43.6779 | 2.5587 | 6.5467 | |
33 | 30.6094 | 2.5408 | 6.4980 | ||
Other Work[ | 11 | 50.42 | 2.58 | 6.68 | |
33 | 34.16 | 2.57 | 6.58 | ||
11 | 41.50 | 2.29 | 5.00 | ||
33 | 26.00 | 2.20 | 4.60 | ||
LiTaO3 | GGA | 11 | 47.0227 | 2.1751 | 4.7311 |
33 | 31.9626 | 2.2199 | 4.8637 | ||
LDA | 11 | 34.1709 | 2.2054 | 4.9278 | |
33 | 34.8047 | 2.2236 | 4.9446 |
[1] | CHEN WEI-JUN, LU KE-QING, HUI JUAN-LI, et al.Study onnonlinear surface waves along the boundary of LiNbO3 crystals.Acta Physica Sinica, 2015, 64(1): 014204. |
[2] | BUSACCA A C, STIVALA S, CURCIO L, et al.Soft protonxchanged channel waveguides in congruent lithium tantalite for frequency doubling.Optics Express, 2010, 18(25): 25967-25972. |
[3] | KUSHIBIKI J, TAKANAGA I, ARAKAWA M, et al.Accurate measurements of the acoustical physical constants of LiNbO3 and LiTaO3 single crystals.IEEE Transactions on Ultrasonics ferroelectrics and Frequency Control, 1999, 46(5): 1315-1323. |
[4] | ABD-ALLA A N, ASKAR N A. Calculation of bulk acoustic wave propagation velocities in trigonal piezoelectric smart materials.Applied Mathematics & Information Sciences, 2014, 8(4): 1625-1632. |
[5] | LIU MEI-NAN, XUE DONG-FENG, LI KE-YAN.Soft-chemistry synthesis of LiNbO3 crystallites. Journal of Alloys and Compounds, 2008, 449(1): 28-31. |
[6] | GONG XIN-XIN, FANG MING, FEI GUAN-TAO, et al.LiTaO3 microbubes: thelayered structure and the increased Curie temperature. Royal Society of Chemistry, 2015, 5: 31615-31621. |
[7] | YANG JIN, LONG JIAN-PING, YANG LI-JUN.First-principles investigations of the physical properties of lithium niobate and lithium tantalite.Physica B, 2013, 425(12): 12-16. |
[8] | TOYOURA K, OHTA M, NAKAMURA A, et al.First-principles study on phase transition and ferroelectricity in lithium niobate and tantalate. Journal of Applied Physics, 2015, 118(6): 64103. |
[9] | LI JIN, ZHOU XIAN-MING, ZHU WEN-JIN, et al.Ashock- induced phase transformation in a LiTaO3 crystal.Journal of Applied Physics, 2007, 102(8): 083503. |
[10] | SANG DAN-DAN, WANG QING-LIN, HAN CHONG, et al.Electronic and optical properties of lithium niobate under high pressure: A first-principles study. Chinese Physics B, 2015, 24(7): 077104. |
[11] | LIU YUE, ZHU HAO-NAN, PEI ZI-DONG, et al.Molecular dynamic simulations of surface morphology and pulsed laser deposition growth of lithium niobate thin films on silicon substrate.Chinese Physics B, 2015, 24(5):056802. |
[12] | NAKAMURA K, HIGUCHI S, OHNUMA T.First-principles in vestigation of pressure-induced phase transition in LiNbO3.Journal of Applied Physics, 2012, 111(3):033522. |
[13] | MUKAIDE T, YAGI T, MIYAJIMA N, et al.High pressure and high temperature phase transformations in LiNbO3. Journal of Applied Physics, 2003, 93(7): 3852-3858. |
[14] | WANG FAN-HOU, YANG JUN-SHENG, HUANG DUO-HUI, et al.Study on magnetic and optical properties of Mn-deped LiNbO3 by using the first principles.Acta Physica Sinica, 2015, 64(9): 097102. |
[15] | REICHENBACH P, KAMPFE T, THIESSEN A, et al.Multiphton photoluminescence contrast in switched Mg: LiNbO3 and Mg:LiTaO3 single crystals.Applied Physics Letters, 2014, 105(12): 122906. |
[16] | ZHAO BAI-QIANG, ZHANG YUN, QIU XIAO-YAN, et al.First-principles study of the electronic structures and absorptionspectrum of Fe: Mg: LiNbO3 crystals.Acta Physica Sinica, 2015, 64(12): 124210. |
[17] | MAMOUN S, MERAD A E, GUILBERT L.Energy band gap and optical properties of lithium niobate from ab initio calculations.Computational Materials Science, 2013, 79: 125-131. |
[18] | SHAO DONG-YUAN, CHENG NAN-PU, CHEN ZHI-QIAN, et al.First-principles studies electronic structures and optical properties of LiNbO3 under high pressure.Journal of Atomic and Molecular Physics, 2014, 31(6): 6-13. |
[19] | RIMEIKA R, SEREIKA A, ČIPLYS D.Acoustoelectric effects in reflection of leaky acoustic waves from LiTaO3 crystal surface coated with metal film.Applied Physics Letters, 2011, 98(5): 052909. |
[20] | ANISIMKIN V I.Anisotropy of the acoustic plate modes in ST-Quartz and 128 degrees Y-LiNbO3.IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2014, 61(1): 120-132. |
[21] | ALSHITS V I, LOTHE J.Acoustic axes in trigonal crystals.Wave Motion, 2006, 43(3): 177-192. |
[22] | ČIPLYS D, RIMEIKA R.Measurements of electromechanical coupling coefficient for surface acoustic waves in proton exchanged lithium niobate.Ultragarsas, 1999, 3(33): 14-20. |
[23] | TAKANAGA I, KUSHIBIKI J.A method of determining acoustical physical constants for piezoelectric materials by line-focus-beam acoustic microscopy.IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2002, 49(7): 893-904. |
[24] | OHGAKI M, TANAKA K, MARUMO F.Anharmonic thermal vibration in a crystal of lithium(I) tantalum(V) trioxide, LiTaO3.Mineralogical Journal, 1989, 14(8): 373-382. |
[25] | HOHENBERG P, KOHN W.Inhomogeneous electron gas.Physical Review B, 1964, 136(3B): 864-871. |
[26] | CEPERLEY D M, ALDER B J.Ground state of the electrongas by a stochastic method.Physical Review Letters, 1980, 45(7): 566-569. |
[27] | PERDEW J P, BURKE K, ERNZERHOF M.Generalized gradient approximation made simple.Physical Review Letters, 1996, 77(18): 3865-3868. |
[28] | VANDERBILT D.Soft self-consistent pseudopotentials in a generalized eigenvalue formalism.Physical Review B, 1990, 41(11): 7892-7895. |
[29] | MONKHORST H J, PACK J D.Special points for Brillouin-zone integrations.Physical Review B, 1976, 13(12): 5188-5192. |
[30] | BROYDEN C G.The convergence of a class of double-rank minimization algorithms 1. General Considerations.Ima Journal of Applied Mathematics, 1970, 6(1): 76-90. |
[31] | FLETCHER R.A new approach to variable metric algorithms.Computer Journal, 1970, 13(3): 317-322. |
[32] | GOLDFARB D.A family of variable-metric methods derived by variational means.Mathematics of Computation, 1970, 24(109): 23-26. |
[33] | SHANNO D F.Conditioning of quasi-newton methods for function minimization.Mathematics of Computation, 1970, 24(4): 647-656. |
[34] | OZISIK H, COLAKOGLU K, OZISIK H B, et al.Structural, elastic, and lattice dynamical properties of Germanium diiodide (GeI2).Computational Materials Science, 2010, 50(2): 349-355. |
[35] | 陈纲, 廖理几. 晶体物理学基础. 北京: 科学出版社, 1992(2): 238-276. |
[1] | WEN Zhiqin, HUANG Binrong, LU Taoyi, ZOU Zhengguang. Pressure on the Structure and Thermal Properties of PbTiO3: First-principle Study [J]. Journal of Inorganic Materials, 2022, 37(7): 787-794. |
[2] | XIAO Meixia, LI Miaomiao, SONG Erhong, SONG Haiyang, LI Zhao, BI Jiaying. Halogenated Ti3C2 MXene as High Capacity Electrode Material for Li-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(6): 660-668. |
[3] | YUAN Gang, MA Xinguo, HE Hua, DENG Shuiquan, DUAN Wangyang, CHENG Zhengwang, ZOU Wei. Plane Strain on Band Structures and Photoelectric Properties of 2D Monolayer MoSi2N4 [J]. Journal of Inorganic Materials, 2022, 37(5): 527-533. |
[4] | ZHANG Xian, ZHANG Ce, JIANG Wenjun, FENG Deqiang, YAO Wei. Synthesis, Electronic Structure and Visible Light Photocatalytic Performance of Quaternary BiMnVO5 [J]. Journal of Inorganic Materials, 2022, 37(1): 58-64. |
[5] | PENG Junhui, TIKHONOV Evgenii. Vacancy on Structures, Mechanical and Electronic Properties of Ternary Hf-Ta-C System: a First-principles Study [J]. Journal of Inorganic Materials, 2022, 37(1): 51-57. |
[6] | XIANG Hui, QUAN Hui, HU Yiyuan, ZHAO Weiqian, XU Bo, YIN Jiang. Piezoelectricity of Graphene-like Monolayer ZnO and GaN [J]. Journal of Inorganic Materials, 2021, 36(5): 492-496. |
[7] | YAN Yuxing, WANG Fan, ZHANG Juexuan, LI Fushao. First Principles Study of Electronic Structure and Optical Properties of ZnNb2O6 with Vacancy Defects [J]. Journal of Inorganic Materials, 2021, 36(3): 269-276. |
[8] | ZHAO Linyan, LIU Yangsi, XI Xiaoli, MA Liwen, NIE Zuoren. First-principles Study on Nanoscale Tungsten Oxide: a Review [J]. Journal of Inorganic Materials, 2021, 36(11): 1125-1136. |
[9] | ZHAO Yupeng,HE Yong,ZHANG Min,SHI Junjie. First-principles Study on the Photocatalytic Hydrogen Production of a Novel Two-dimensional Zr2CO2/InS Heterostructure [J]. Journal of Inorganic Materials, 2020, 35(9): 993-998. |
[10] | LIN Qimin, CUI Jiangong, YAN Xin, YUAN Xueguang, CHEN Xiaoyu, LU Qichao, LUO Yanbin, HUANG Xue, ZHANG Xia, REN Xiaomin. First-principles Study on Electronic Structure and Optical Properties of Single Point Defect Graphene Oxide [J]. Journal of Inorganic Materials, 2020, 35(10): 1117-1122. |
[11] | WANG Chang-Ying, LU Yu-Chang, REN Cui-Lan, WANG Gang, HUAI Ping. Theoretical Studies on the Modulation of the Electronic Property of Ti2CO2 by Electric Field, Strain and Charge States [J]. Journal of Inorganic Materials, 2020, 35(1): 73-78. |
[12] | LIU Guo-Quan, JIANG Xiao-Juan, ZHOU Jie, LI You-Bing, BAI Xiao-Jing, CHEN Ke, HUANG Qing, DU Shi-Yu. Synthesis and Theoretical Study of Conductive Mo1.33CT2 MXene [J]. Journal of Inorganic Materials, 2019, 34(7): 775-780. |
[13] | WANG Zhong, ZHA Xian-Hu, WU Ze, HUANG Qing, DU Shi-Yu. First-principles Study on Electronic and Magnetic Properties of Mn-doped Strontium Ferrite SrFe12O19 [J]. Journal of Inorganic Materials, 2019, 34(10): 1047-1054. |
[14] | GU Feng, WANG You-Wei, ZHENG Zhi-Hui, LIU Jian-Jun, LU Wen-Cong. Catalytic Mechanism of Palladium Catalyst for the Oxidation Reduction and Evolution Reaction of Lithium-air Battery [J]. Journal of Inorganic Materials, 2018, 33(10): 1131-1135. |
[15] | ZHANG Jian-Feng, CAO Hui-Yang, WANG Hong-Bing. Research Progress of Novel Two-dimensional Material MXene [J]. Journal of Inorganic Materials, 2017, 32(6): 561-570. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||