Journal of Inorganic Materials ›› 2016, Vol. 31 ›› Issue (2): 123-134.DOI: 10.15541/jim20150231
• Orginal Article • Previous Articles Next Articles
FENG Ai-Hu, YU Yun, SONG Li-Xin
Received:
2015-05-11
Revised:
2015-07-06
Published:
2016-02-20
Online:
2016-01-15
About author:
FENG Ai-Hu. E-mail: hpufengaihu@163.com
CLC Number:
FENG Ai-Hu, YU Yun, SONG Li-Xin. Research Progress of Graphene and Its Composites as Electrodes for Capacitive Deionization[J]. Journal of Inorganic Materials, 2016, 31(2): 123-134.
Electrode materials | Specific surface area/(m2∙g-1) | [Specific capacitance/ (F∙g-1)]/[Scan rate/ (mV∙s-1)] | Applied voltage/V | [Initial concentration/ (mg∙L-1)]/[Initial conductivity/(μS∙cm-1)] | Electrosorption capacity/(mg∙g-1) | Ref. |
---|---|---|---|---|---|---|
GR | 14.2 | 75.18/70.00 | 2.0 | -/~50 | 1.85 | [21] |
GR | 77.0 | - | 2.0 | 22.8/- | 0.46 | [17] |
GR | 222.1 | - | 2.0 | -/~55 | 1.35 | [26] |
GR | - | - | 2.0 | -/86.9 | 0.88 | [27] |
GR | 464.0 | 149.8/5.0 | 2.0 | -/500 | 8.60 | [19] |
RGO-RF | 406.4 | 135.7/10.0 | 2.0 | -/~58 | 1.42 | [35] |
3DMGA | 339.0 | 58.4/5.0 | 2.0 | -/~105 | 5.39 | [37] |
3DGHPC | 384.4 | 80.34/10.00 | 1.2 | -/60 | 6.18 | [38] |
GHMCS | 400.4 | 43.22/10.00 | 1.6 | -/68.5 | 2.30 | [39] |
STGS | 305.0 | 57/10 | 1.5 | -/~106 | 4.95 | [40] |
GS | 356.0 | 205.2/5.0 | 1.2 | 500/- | 14.90 | [41] |
KOH-activated GR | 3513.0 | - | 2.0 | 70/150 | 11.86 | [46] |
20%GR+AC | 779.0 | 181/1 | 1.2 | -/100 | 2.94 | [48] |
5%GR+MC | 685.2 | 89.5/1.0 | - | -/~90 | 0.73 | [49] |
GR+10%CNTs | 479.5 | 68/10 | 2.0 | -/57 | 1.41 | [53] |
10%GR+CNTs | 438.6 | 311.1/10.0 | 1.6 | -/100 | 0.88 | [54] |
GR+10%SWCNTs | 391.0 | 213/10 | 2.0 | 780/1540 | 26.42 | [55] |
GR+15% SnO2 | - | 323/5 | 1.4 | -/~61 | 1.49 | [60] |
GR+MnO2-NPs | - | 180/10 | 1.2 | -/~100 | ~3.50 | [61] |
GR+MnO2-NRs | - | 292/10 | 1.2 | -/~100 | 5.01 | [61] |
GR+Ag | - | 114.7/25.0 | 1.5 | -/- | - | [64] |
GR+Ag@C | - | 107.6/25.0 | 1.5 | -/- | - | [64] |
GR+TiO2 | 187.6 | 142.6/5.0 | 1.2 | 500/- | 15.10 | [66] |
GR+20%TiO2 | - | 443/10 | 0.8 | ~300/- | 9.10 | [67] |
GR+4%PANI | 394.0 | - | 1.2 | 500/- | - | [71] |
GR+PCNF | 474.0 | 151/- | 1.2 | 100/- | 7.80 | [75] |
10%GR+ACF | 621.0 | 193/5 | 1.2 | 400/- | 7.20 | [76] |
Table 1 Comparison of the performance among different graphene-based electrode materials
Electrode materials | Specific surface area/(m2∙g-1) | [Specific capacitance/ (F∙g-1)]/[Scan rate/ (mV∙s-1)] | Applied voltage/V | [Initial concentration/ (mg∙L-1)]/[Initial conductivity/(μS∙cm-1)] | Electrosorption capacity/(mg∙g-1) | Ref. |
---|---|---|---|---|---|---|
GR | 14.2 | 75.18/70.00 | 2.0 | -/~50 | 1.85 | [21] |
GR | 77.0 | - | 2.0 | 22.8/- | 0.46 | [17] |
GR | 222.1 | - | 2.0 | -/~55 | 1.35 | [26] |
GR | - | - | 2.0 | -/86.9 | 0.88 | [27] |
GR | 464.0 | 149.8/5.0 | 2.0 | -/500 | 8.60 | [19] |
RGO-RF | 406.4 | 135.7/10.0 | 2.0 | -/~58 | 1.42 | [35] |
3DMGA | 339.0 | 58.4/5.0 | 2.0 | -/~105 | 5.39 | [37] |
3DGHPC | 384.4 | 80.34/10.00 | 1.2 | -/60 | 6.18 | [38] |
GHMCS | 400.4 | 43.22/10.00 | 1.6 | -/68.5 | 2.30 | [39] |
STGS | 305.0 | 57/10 | 1.5 | -/~106 | 4.95 | [40] |
GS | 356.0 | 205.2/5.0 | 1.2 | 500/- | 14.90 | [41] |
KOH-activated GR | 3513.0 | - | 2.0 | 70/150 | 11.86 | [46] |
20%GR+AC | 779.0 | 181/1 | 1.2 | -/100 | 2.94 | [48] |
5%GR+MC | 685.2 | 89.5/1.0 | - | -/~90 | 0.73 | [49] |
GR+10%CNTs | 479.5 | 68/10 | 2.0 | -/57 | 1.41 | [53] |
10%GR+CNTs | 438.6 | 311.1/10.0 | 1.6 | -/100 | 0.88 | [54] |
GR+10%SWCNTs | 391.0 | 213/10 | 2.0 | 780/1540 | 26.42 | [55] |
GR+15% SnO2 | - | 323/5 | 1.4 | -/~61 | 1.49 | [60] |
GR+MnO2-NPs | - | 180/10 | 1.2 | -/~100 | ~3.50 | [61] |
GR+MnO2-NRs | - | 292/10 | 1.2 | -/~100 | 5.01 | [61] |
GR+Ag | - | 114.7/25.0 | 1.5 | -/- | - | [64] |
GR+Ag@C | - | 107.6/25.0 | 1.5 | -/- | - | [64] |
GR+TiO2 | 187.6 | 142.6/5.0 | 1.2 | 500/- | 15.10 | [66] |
GR+20%TiO2 | - | 443/10 | 0.8 | ~300/- | 9.10 | [67] |
GR+4%PANI | 394.0 | - | 1.2 | 500/- | - | [71] |
GR+PCNF | 474.0 | 151/- | 1.2 | 100/- | 7.80 | [75] |
10%GR+ACF | 621.0 | 193/5 | 1.2 | 400/- | 7.20 | [76] |
[1] | SHANNON M A, BOHN P W, ELIMELECH M, et al.Science and technology for water purification in the coming decades.Nature, 2008, 452(7185): 301-310. |
[2] | ANDERSON M A, CUDERO A L, PALMA J.Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: will it compete?Electrochimica Acta, 2010, 55(12): 3845-3856. |
[3] | ZOU L, VIDALIS I, STEELE D, et al.Surface hydrophilic modification of RO membranes by plasma polymerization for low organic fouling.Journal of Membrane Science, 2011, 369(1/2): 420-428. |
[4] | YANG C M, CHOI W H, NA B K, et al.Capacitive deionization of NaCl solution with carbon aerogel-silicagel composite electrodes.Desalination, 2005, 174(2): 125-133. |
[5] | WELGEMOED T J, SCHUTTE C F.Capacitive deionization dechnology™: an alternative desalination solution.Desalination, 2005, 183(1/2/3): 327-340. |
[6] | MURPHY G W, CAUDLE D D.Mathematical theory of electrochemical demineralization in flowing systems.Electrochimical Acta, 1967, 12: 1655-1664. |
[7] | JOHNSON A M, NEWMAN J.Desalting by means of porous carbon electrodes.Journal of the Electrochemical Society, 1971, 118(3): 510-517. |
[8] | FARMER J C, FIX D V, MACK G V, et al.Capacitive deionization of NH4ClO4 solutions with carbon aerogel electrodes.Journal of Applied Electrochemistry, 1996, 26(10): 1007-1018. |
[9] | FARMER J C, FIX D V, MACK G V, et al.Capacitive deionization of NaCl and NaNO3 solutions with carbon aerogel electrodes. Journal of the Electrochemical Society, 1996, 143(1): 159-169. |
[10] | XU P, DREWES J E, HEIL D, et al.Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology. Water Research, 2008, 42(10/11): 2605-2617. |
[11] | VILLAR I, ROLDAN S, RUIZ V, et al.Capacitive deionization of NaCl solutions with modified activated carbon electrodes.Energy & Fuels, 2010, 24(6): 3329-3333. |
[12] | ZOU L, MORRIS G, QI D.Using activated carbon electrode in electrosorptive deionisation of brackish water.Desalination, 2008, 225(1/2/3): 329-340. |
[13] | RASINES G, LAVELA P, MAC AS C, et al.Electrochemical response of carbon aerogel electrodes in saline water.Journal of Electroanalytical Chemistry, 2012, 671: 92-98. |
[14] | PENG Z, ZHANG D S, SHI L Y, et al.Comparative electroadsorption study of mesoporous carbon electrodes with various pore structures.The Journal of Physical Chemistry C, 2011, 115(34): 17068-17076. |
[15] | TSOURIS C, MAYES R, KIGGANS J, et al.Mesoporous carbon for capacitive deionization of saline water.Environment Science & Technology, 2011, 45(23): 10243-10249. |
[16] | WANG L, WANG M, HUANG Z H, et al.Capacitive deionization of NaCl solutions using carbon nanotube sponge electrodes.Journal of Materials Chemistry, 2011, 21(45): 18295-18299. |
[17] | LI H B, PAN L K, LU T, et al.A comparative study on electrosorptive behavior of carbon nanotubes and graphene for capacitive deionization.Journal of Electroanalytical Chemistry, 2011, 653(1/2): 40-44. |
[18] | ZHANG D S, SHI L Y, FANG J H, et al.Influence of diameter of carbon nanotubes mounted in flow-through capacitors on removal of NaCl from salt water.Journal of Materials Science, 2006, 42(7): 2471-2475. |
[19] | JIA B P, ZOU L.Graphene nanosheets reduced by a multi-step process as high-performance electrode material for capacitive deionisation. Carbon, 2012, 50(6): 2315-2321. |
[20] | WANG Z, YUE L, LIU Z T, et al.Functional graphene nanocomposite as an electrode for the capacitive removal of FeCl3 from water.Journal of Materials Chemistry, 2012, 22(28): 14101-14107. |
[21] | LI H B, LU T, PAN L K, et al.Electrosorption behavior of graphene in NaCl solutions.Journal of Materials Chemistry, 2009, 19(37): 6773-6779. |
[22] | SINGH V, JOUNG D, ZHAI L, et al.Graphene based materials: Past, present and future.Progress in Materials Science, 2011, 56(8): 1178-1271. |
[23] | STOLLER M D, PARK S, ZHU Y W, et al.Graphene-based ultracapacitors.Nano Letters, 2008, 8(10): 3498-3502. |
[24] | HUMMERS W, OFFEMA R.Preparation of graphitic oxide.Journal of the American Chemical Society, 1958, 80: 1339. |
[25] | XU Y X, BAI H, LU G W, et al.Flexible graphene films via the filtration of water-soluble.Journal of the American Chemical Society, 2008, 130: 5856-5857. |
[26] | LI H B, ZOU L, PAN L K, et al.Novel graphene-like electrodes for capacitive deionization. Environment Science & Technology, 2010, 44: 8692-8697. |
[27] | WANG H, ZHANG D S, YAN T T, et al.Graphene prepared via a novel pyridine-thermal strategy for capacitive deionization.Journal of Materials Chemistry, 2012, 22(45): 23745-23748. |
[28] | JIA B P, ZOU L.Functionalized graphene as electrode material for capacitive deionization.Science of Advanced Materials, 2013, 5(8): 1111-1116. |
[29] | JIA B P, ZOU L.Wettability and its influence on graphene nansoheets as electrode material for capacitive deionization.Chemical Physics Letters, 2012, 548: 23-28. |
[30] | SI Y, SAMULSKI E T.Synthesis of water soluble graphene.Nano Letters, 2008, 8(6): 1679-1682. |
[31] | DREYER D R, PARK S, BIELAWSKI C W, et al.The chemistry of graphene oxide.Chemical Society Reviews, 2010, 39: 228-240. |
[32] | LIU Y, NIE C Y, LIU X J, et al.Review on carbon-based composite materials for capacitive deionization.RSC Advances, 2015, 5: 15205-15225. |
[33] | WORSLEY M A, KUCHEYEV S O, SATCHER J H, et al.Mechanically robust and electrically conductive carbon nanotube foams.Applied Physics Letters, 2009, 94: 073115. |
[34] | LI C, SHI G.Three-dimensional graphene architectures.Nanoscale, 2012, 4(18): 5549-5563. |
[35] | WANG Z, DOU B J, ZHENG L, et al.Effective desalination by capacitive deionization with functional graphene nanocomposite as novel electrode material.Desalination, 2012, 299: 96-102. |
[36] | WORSLEY M A, PAUZAUSKIE P J, OLSON T Y, et al.Synthesis of graphene aerogel with high electrical conductivity.Journal of the American Chemical Society, 2010, 132: 14067-14069. |
[37] | WANG H, ZHANG D S, YAN T T, et al.Three-dimensional macroporous graphene architectures as high performance electrodes for capacitive deionization.Journal of Materials Chemistry A, 2013, 1(38): 11778-11789. |
[38] | WEN X R, ZHANG D S, YAN T T, et al.Three-dimensional graphene- based hierarchically porous carbon composites prepared by a dual-template strategy for capacitive deionization.Journal of Materials Chemistry A, 2013, 1(39): 12334-12344. |
[39] | WANG H, SHI L Y, YAN T T, et al.Design of graphene-coated hollow mesoporous carbon spheres as high performance electrodes for capacitive deionization.Journal of Materials Chemistry A, 2014, 2(13): 4739-4750. |
[40] | YANG Z Y, JIN L J, LU G Q, et al.Sponge-templated preparation of high surface area graphene with ultrahigh capacitive deionization performance.Advanced Functional Materials, 2014, 24(25): 3917-3925. |
[41] | XU X T, PAN L K, LIU Y, et al.Facile synthesis of novel graphene sponge for high performance capacitive deionization. Scientific Reports, 2015, 5: 8458. |
[42] | LILLO-RODENAS M A, CAZORLA-AMOROS D, LINARES- SOLANO A. Understanding chemical reactions between carbons and NaOH and KOH: an insight into the chemical activation mechanism.Carbon, 2003, 41: 267-275. |
[43] | RAYMUNDO-PINERO E, AZAıS P, CACCIAGUERRA T, et al. KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation.Carbon, 2005, 43: 786-795. |
[44] | BARRANCO V, LILLO-RODENAS M A, LINARES-SOLANO A, et al. Amorphous carbon nanofibers and their activated carbon nanofibers as supercapacitor electrodes.Journal of Physical Chemistry C, 2010, 114: 10302-10307. |
[45] | ZHU Y W, MURALI S, STOLLER M D, et al.Carbon-based supercapacitors produced by activation of graphene.Science, 2011, 332: 1537-1541. |
[46] | LI Z, SONG B, WU Z K, et al.3D porous graphene with ultrahigh surface area for microscale capacitive deionization.Nano Energy, 2015, 11: 711-718. |
[47] | LEE J B, PARK K K, YOON S W, et al.Desalination performance of a carbon-based composite electrode.Desalination, 2009, 237(1): 155-161. |
[48] | LI H B, PAN L K, NIE C Y, et al.Reduced graphene oxide and activated carbon composites for capacitive deionization.Journal of Materials Chemistry, 2012, 22(31): 15556-15561. |
[49] | ZHANG D S, WEN X R, SHI L Y, et al.Enhanced capacitive deionization of graphene/mesoporous carbon composites.Nanoscale, 2012, 4(17): 5440-5446. |
[50] | GAO Y, PAN L K, ZHANG Y P, et al.Electrosorption of FeCl3 solution with carbon nanotubes and nanofibres film electrodes grown on graphite substrates.Surface Review Letters, 2007, 14(6): 1033-1037. |
[51] | LI H B, PAN L K, ZHANG Y P, et al.Ferric ion adsorption and electrodesorption by carbon nanotubes and nanofibres films.Water Science and Technology, 2009, 59(8): 1657-1663. |
[52] | PAN L K, WANG X Z, GAO Y, et al.Electrosorption of anions with carbon nanotube and nanofibre composite film electrodes.Desalination, 2009, 244(1/2/3): 139-143. |
[53] | ZHANG D S, YAN T T, SHI L Y, et al.Enhanced capacitive deionization performance of graphene/carbon nanotube composites.Journal of Materials Chemistry, 2012, 22(29): 14696-14704. |
[54] | LI H B, LIANG S, LI J, et al.The capacitive deionization behaviour of a carbon nanotube and reduced graphene oxide composite.Journal of Materials Chemistry A, 2013, 1(21): 6335-6341. |
[55] | WIMALASIRI Y, ZOU L.Carbon nanotube/graphene composite for enhanced capacitive deionization performance.Carbon, 2013, 59: 464-471. |
[56] | WIMALASIRI Y, ZOU L.Response to "Comments on 'carbon nanotube/graphene composite for enhanced capacitive deionization performance' by Y. Wimalasiri and L. Zou".Carbon, 2015, 81: 847-849. |
[57] | SUN X, XIE M, WANG G K, et al.Atomic layer deposition of TiO2 on graphene for supercapacitors.Journal of The Electrochemical Society, 2012, 159(4): A364. |
[58] | QIAN Y, LU S B, GAO F L.Preparation of MnO2/graphene composite as electrode material for supercapacitors.Journal of Materials Science, 2011, 46(10): 3517-3522. |
[59] | SEEMA H, KEMP K C, CHANDRA V, et al.Graphene-SnO2 composites for highly efficient photocatalytic degradation of methylene blue under sunlight.Nanotechnology, 2012, 23: 355705. |
[60] | EL-DEEN A G, BARAKAT N A M, KHALIL K A, et al. Graphene/SnO2 nanocomposite as an effective electrode material for saline water desalination using capacitive deionization.Ceramics International, 2014, 40(9): 14627-14634. |
[61] | EL-DEEN A G, BARAKAT N A M, KIM H Y. Graphene wrapped MnO2-nanostructures as effective and stable electrode materials for capacitive deionization desalination technology.Desalination, 2014, 344: 289-298. |
[62] | PASRICHA R, GUPTA S, SRIVASTAVA A K.A facile and novel synthesis of Ag-graphene-based nanocomposites.Small, 2009, 5(20): 2253-2259. |
[63] | ZHENG L, ZHANG G N, ZHANG M, et al.Preparation and capacitance performance of Ag-graphene based nanocomposite.Journal of Power Sources, 2012, 201: 376-381. |
[64] | CAI P F, SU C J, CHANG W T, et al.Capacitive deionization of seawater effected by nano Ag and Ag@C on graphene.Marine Pollution Bulletin, 2014, 85(2): 733-737. |
[65] | ZHU C Z, GUO S J, WANG P, et al.One-pot, water-phase approach to high-quality graphene/TiO2 composite nanosheets.Chemical Communications, 2010, 46(38): 7148-7150. |
[66] | YIN H J, ZHAO S L, WAN J W, et al.Three-dimensional graphene/ metal oxide nanoparticle hybrids for high-performance capacitive deionization of saline water.Advanced Materials, 2013, 25(43): 6270-6276. |
[67] | EL-DEEN A G, CHOI J H, KIM C S, et al. TiO2 nanorod-intercalated reduced graphene oxide as high performance electrode material for membrane capacitive deionization.Desalination, 2015, 361: 53-64. |
[68] | LAI L F, YANG H P, WANG L, et al.Preparation of supercapacitor electrodes through selection of graphene surface functionalities.ACS Nano, 2012, 6(7): 5941-5951. |
[69] | ZHOU Y, QIN Z Y, LI L, et al.Polyaniline/multiwalled carbon nanotube composites with core-shell structures as supercapacitors electrode materials.Electrochimica Acta, 2010, 55(12): 3904-3908. |
[70] | LI Q.Application of polyaniline modified graphite electrodes for capacitive deionization of aqueous NaCl solution.Asian Journal of Chemistry, 2010, 22(10): 8126-8130. |
[71] | YAN C J, KANATHTHAGE Y W, SHORT R, et al.Graphene/ polyaniline nanocomposite as electrode material for membrane capacitive deionization. Desalination, 2014, 344: 274-279. |
[72] | WU Q, XU Y X, YAO Z Y, et al.Supercapacitors based on flexible graphene/polyaniline nanofiber composite films.ACS Nano, 2010, 4(4): 1963-1970. |
[73] | WANG M, HUANG Z H, WANG L, et al.Electrospun ultrafine carbon fiber webs for electrochemical capacitive desalination.New Journal of Chemistry, 2010, 34(9): 1843-1845. |
[74] | ZHOU Z P, WU X F, FONG H.Electrospun carbon nanofibers surface-grafted with vapor-grown carbon nanotubes as hierarchical electrodes for supercapacitors.Applied Physics Letters, 2012, 100: 023114-023115. |
[75] | BAI Y, HUANG Z H, YU X L, et al.Graphene oxide-embedded porous carbon nanofiber webs by electrospinning for capacitive deionization.Colloids and Surfaces A: Physicochemial and Engineering Aspects, 2014, 444: 153-158. |
[76] | DONG Q, WANG G, QIAN B, et al.Electrospun composites made of reduced graphene oxide and activated carbon nanofibers for capacitive deionization.Electrochimica Acta, 2014, 137: 388-394. |
[1] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
[2] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[3] | CHEN Qiang, BAI Shuxin, YE Yicong. Highly Thermal Conductive Silicon Carbide Ceramics Matrix Composites for Thermal Management: a Review [J]. Journal of Inorganic Materials, 2023, 38(6): 634-646. |
[4] | LIN Junliang, WANG Zhanjie. Research Progress on Ferroelectric Superlattices [J]. Journal of Inorganic Materials, 2023, 38(6): 606-618. |
[5] | NIU Jiaxue, SUN Si, LIU Pengfei, ZHANG Xiaodong, MU Xiaoyu. Copper-based Nanozymes: Properties and Applications in Biomedicine [J]. Journal of Inorganic Materials, 2023, 38(5): 489-502. |
[6] | YUAN Jingkun, XIONG Shufeng, CHEN Zhangwei. Research Trends and Challenges of Additive Manufacturing of Polymer-derived Ceramics [J]. Journal of Inorganic Materials, 2023, 38(5): 477-488. |
[7] | DU Jianyu, GE Chen. Recent Progress in Optoelectronic Artificial Synapse Devices [J]. Journal of Inorganic Materials, 2023, 38(4): 378-386. |
[8] | YANG Yang, CUI Hangyuan, ZHU Ying, WAN Changjin, WAN Qing. Research Progress of Flexible Neuromorphic Transistors [J]. Journal of Inorganic Materials, 2023, 38(4): 367-377. |
[9] | YOU Junqi, LI Ce, YANG Dongliang, SUN Linfeng. Double Dielectric Layer Metal-oxide Memristor: Design and Applications [J]. Journal of Inorganic Materials, 2023, 38(4): 387-398. |
[10] | LIN Siqi, LI Airan, FU Chenguang, LI Rongbing, JIN Min. Crystal Growth and Thermoelectric Properties of Zintl Phase Mg3X2 (X=Sb, Bi) Based Materials: a Review [J]. Journal of Inorganic Materials, 2023, 38(3): 270-279. |
[11] | CHEN Kunfeng, HU Qianyu, LIU Feng, XUE Dongfeng. Multi-scale Crystallization Materials: Advances in in-situ Characterization Techniques and Computational Simulations [J]. Journal of Inorganic Materials, 2023, 38(3): 256-269. |
[12] | ZHANG Chaoyi, TANG Huili, LI Xianke, WANG Qingguo, LUO Ping, WU Feng, ZHANG Chenbo, XUE Yanyan, XU Jun, HAN Jianfeng, LU Zhanwen. Research Progress of ScAlMgO4 Crystal: a Novel GaN and ZnO Substrate [J]. Journal of Inorganic Materials, 2023, 38(3): 228-242. |
[13] | QI Zhanguo, LIU Lei, WANG Shouzhi, WANG Guogong, YU Jiaoxian, WANG Zhongxin, DUAN Xiulan, XU Xiangang, ZHANG Lei. Progress in GaN Single Crystals: HVPE Growth and Doping [J]. Journal of Inorganic Materials, 2023, 38(3): 243-255. |
[14] | XIE Bing, CAI Jinxia, WANG Tongtong, LIU Zhiyong, JIANG Shenglin, ZHANG Haibo. Research Progress of Polymer-based Multilayer Composite Dielectrics with High Energy Storage Density [J]. Journal of Inorganic Materials, 2023, 38(2): 137-147. |
[15] | LIU Yan, ZHANG Keying, LI Tianyu, ZHOU Bo, LIU Xuejian, HUANG Zhengren. Electric-field Assisted Joining Technology for the Ceramics Materials: Current Status and Development Trend [J]. Journal of Inorganic Materials, 2023, 38(2): 113-124. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||